Identification of drought stress-responsive transcription factors in ramie (Boehmeria nivea L. Gaud)

文献类型: 外文期刊

第一作者: Liu, Touming

作者: Liu, Touming

作者机构:

关键词: Ramie;Drought stress;Transcription factor;Illumina tag-sequencing;qRT-PCR

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2013 年 13 卷

页码:

收录情况: SCI

摘要: Background: Ramie fiber extracted from stem bark is one of the most important natural fibers. Drought is a main environment stress which severely inhibits the stem growth of ramie and leads to a decrease of the fiber yield. The drought stress-regulatory mechanism of ramie is poorly understood. Result: Using Illumina sequencing, approximately 4.8 and 4.7 million (M) 21-nt cDNA tags were respectively sequenced in the cDNA libraries derived from the drought-stressed ramie (DS) and the control ramie under well water condition (CO). The tags generated from the two libraries were aligned with ramie transcriptome to annotate their function and a total of 23,912 and 22,826 ramie genes were matched by these tags of DS and CO library, respectively. Comparison of gene expression level between CO and DS ramie based on the differences of tag frequencies appearing in the two libraries revealed that there were 1516 potential drought stress-responsive genes, in which 24 genes function as transcription factor (TF). Among these 24 TFs, the unigene 19721 encoding the DELLA protein which is a key negative regulator in gibberellins (GAs) signal pathway was probably markedly up-regulated under water stress for a increase of tag abundance in DS library, which is possibly responsible for the inhibition of the growth of drought-stressed ramie. In order to validate the change of expression of these potential stress-responsive TFs under water deficit condition, the unigene 19721 and another eleven potential stress-responsive TFs were chosen for further expression analysis in well-watered and drought-stressed ramie by real-time quantitative PCR (qRT-PCR) and the result showed that all 12 TFs were authentically involved in the response of drought stress. Conclusion: In this study, twelve TFs involving in the response of drought stress were first found by Illumina tag-sequencing and qRT-PCR in ramie. The discovery of these drought stress-responsive TFs will be helpful for further understanding the drought stress-regulatory mechanism of ramie and improving the drought tolerance ability of ramie.

分类号:

  • 相关文献

[1]Identification of drought, cadmium and root-lesion nematode infection stress-responsive transcription factors in ramie. Zheng, Xia,Zhu, Siyuan,Tang, Shouwei,Liu, Touming,Zheng, Xia,Zhu, Siyuan,Tang, Shouwei,Liu, Touming. 2016

[2]Genome-wide transcriptomic profiling of ramie (Boehmeria nivea L. Gaud) in response to cadmium stress. Liu, Touming,Zhu, Siyuan,Tang, Qingming,Tang, Shouwei.

[3]Isobaric Tags for Relative and Absolute Quantitation (iTRAQ)-Based Comparative Proteome Analysis of the Response of Ramie under Drought Stress. An, Xia,Zhang, Jingyu,Dai, Lunjin,Liao, Yiwen,Liu, Lijun,Wang, Bo,Peng, Dingxiang,An, Xia,Deng, Gang. 2016

[4]Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement. Sun, Yiding,Yu, Diqiu,Sun, Yiding,Sun, Yiding.

[5]A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. Zhang, Lichao,Zhao, Guangyao,Xia, Chuan,Jia, Jizeng,Liu, Xu,Kong, Xiuying. 2012

[6]AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Zhong, Li,Li, Weiwei,Xu, Zhaoshi,Zhou, Yongbin,Li, Liancheng,Chen, Ming,Ma, Youzhi,Zhong, Li,Chen, Dandan,Min, Donghong.

[7]Protein-DNA interactions in the promoter region of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide of the cotton bollworm, Helicoverpa armigera. Hong, B,Zhang, ZF,Tang, SM,Yi, YZ,Zhang, TY,Xu, WH.

[8]Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Liu, Yunguo,Wang, Xin,Zeng, Guangming,Qu, Dan,Gu, Jiajia,Zhou, Ming,Chal, Liyuan. 2007

[9]Isolation, identification, and environmental adaptability of heavy-metal-resistant bacteria from ramie rhizosphere soil around mine refinery. Jiang, Jie,Pan, Chaohu,Zhang, Guimin,Xiao, Aiping,Yang, Xiai. 2017

[10]Constitutional tolerance to heavy metals of a fiber crop, ramie (Boehmeria nivea), and its potential usage. Yang, B.,Zhou, M.,Shu, W. S.,Lan, C. Y.,Ye, Z. H.,Yang, B.,Zhou, M.,Shu, W. S.,Lan, C. Y.,Ye, Z. H.,Qiu, R. L.,Qiu, R. L.,Jie, Y. C.,Cui, G. X.,Wong, M. H.,Wong, M. H..

[11]Construction and co-expression of polycistronic plasmids encoding bio-degumming-related enzymes to improve the degumming process of ramie fibres. Cheng, Yi,Liu, Zhengchu,Zeng, Jie,Cheng, Lifeng,Yan, Zhun,Duan, Shengwen,Feng, Xiangyuan,Zheng, Ke,Zheng, Xia,Wang, Ruijun.

[12]Senescence is delayed when ramie (Boehmeria nivea L.) is transformed with the isopentyl transferase (ipt) gene under control of the SAG12 promoter. An, Xia,Zhang, Jingyu,Liao, Yiwen,Liu, Lijun,Peng, Dingxiang,Wang, Bo,An, Xia. 2017

[13]Identification of quantitative trait loci for flowering time traits in ramie (Boehmeria nivea L. Gaud). Zhu, Siyuan,Zheng, Xia,Dai, Qiuzhong,Tang, Shouwei,Liu, Touming,Zhu, Siyuan,Zheng, Xia,Dai, Qiuzhong,Tang, Shouwei,Liu, Touming.

[14]Molecular identity of ramie germplasms using simple sequence repeat markers. Luan, M. B.,Zhu, J. J.,Wang, X. F.,Xu, Y.,Sun, Z. M.,Chen, J. H.,Chen, B. F.,Zou, Z. Z.. 2015

[15]Extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L. Gaud) leaf using an ethanol/salt aqueous two-phase system. Tan, Zhijian,Wang, Chaoyun,Yi, Yongjian,Wang, Hongying,Li, Mao,Zhou, Wanlai,Tan, Shiyong,Tan, Zhijian,Li, Fenfang. 2014

[16]SSR markers associated with fiber yield traits in ramie (Boehmeria nivea L. Gaudich). Luan, Ming-Bao,Liu, Chen-Chen,Wang, Xiao-Fei,Xu, Ying,Sun, Zhi-Min,Chen, Jian-Hua. 2017

[17]Identification, evaluation, and application of the genomic-SSR loci in ramie. Luan, Ming-Bao,Yang, Ze-Mao,Zhu, Juan-Juan,Deng, Xin,Liu, Chen-Chen,Wang, Xiao-Fei,Xu, Ying,Sun, Zhi-Min,Chen, Jian-Hua. 2016

[18]Fast evaluation of pectin content in ramie using NIR techniques. Jiang, Wei,Han, Guangting,Jiang, Wei,Han, Guangting,Zhang, Yuanming,Chen, Jianhua. 2011

[19]Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud). Liu, Touming,Tang, Shouwei,Zhu, Siyuan,Tang, Qingming,Zheng, Xia.

[20]Cloning and Expression of Key Enzyme Gene GalAT in Ramie Pectin Biosynthesis. Liu Jian-xin,Yu Chun-ming,Tang Shou-wei,Zhu Ai-guo,Wang Yan-zhou,Zhu Si-yuan,Ma Xiong-feng,Xiong He-ping,Liu Jian-xin. 2009

作者其他论文 更多>>