The MAPKKK Gene Family in Gossypium raimondii: Genome-Wide Identification, Classification and Expression Analysis

文献类型: 外文期刊

第一作者: Zujun Yin

作者: Zujun Yin;Junjuan Wang;Delong Wang;Weili Fan;Shuai Wang;Wuwei Ye

作者机构:

关键词: cotton;ovule;MAPK cascade;MAPKKK;gene family

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.923; 五年影响因子:6.132 )

ISSN: 1422-0067

年卷期: 2013 年 14 卷 9 期

页码:

收录情况: SCI

摘要: Mitogen-activated protein kinase (MAPK) cascades are conserved signal transduction pathways in all eukaryotic organisms. MAPKKKs (MAPK kinase kinases) operate at the top levels of these cascades. Recently, this family of genes has been systematically investigated in Arabidopsis, rice and maize, but has not yet been characterized in cotton. In this study, we identified 78 putative MAPKKK genes in the genome of the diploid cotton, Gossypium raimondii. They were classified into three subfamilies, of which 12 were ZIK, 22 were MEKK and 44 were Raf. The ZIK and MEKK genes displayed a scattered genomic distribution across 11 of the 13 chromosomes, whereas Raf genes were distributed across the entire genome. Their conserved patterns observed for introns and additional domains were consistent with the evolutionary relationships inferred from the phylogenetic analysis within subfamily. Transcriptome sequencing data were used to investigate their transcript profiles in mature leaves, 0 day and 3 days post-anthesis (DPA) ovules. Sixty MAPKKK genes were expressed, of which 41 were strongly expressed in mature leaves. Twelve MAPKKK genes were more highly expressed in 3-DPA ovules than in 0-DPA ovules. Our results provide a foundation for future evolutionary and functional characterizations of MAPKKK genes in cotton and probably other Gossypium plants.

分类号:

  • 相关文献

[1]Comparative proteomic analysis reveals the mechanisms governing cotton fiber differentiation and initiation. Kang Liu,Meiling Han,Chaojun Zhang,Liangyu Yao,Jing Sun,Tianzhen Zhang.

[2]Genome-wide identification, phylogeny, and expression analysis of pectin methylesterases reveal their major role in cotton fiber development. Weijie Li,Haihong Shang,Qun Ge,Changsong Zou,Juan Cai,Daojie Wang,Senmiao Fan,Zhen Zhang,Xiaoying Deng,Yunna Tan,Weiwu Song,Pengtao Li,Palanga Kibalou Koffi,Muhammad Jamshed,Quanwei Lu,Wankui Gong,Junwen Li,Yuzhen Shi,Tingting Chen,Juwu Gong,Aiying Liu,Youlu Yuan. 2016

[3]Genome-wide analysis of the calcium-dependent protein kinase gene family inGossypium raimondii. Yu Dingwei,Zhao Fengli,Pang Chaoyou,Song Meizhen,Wei Hengling,Fan Shuli,Yu Shuxun. 2015

[4]Genome-Wide Study of YABBY Genes in Upland Cotton and Their Expression Patterns under Different Stresses. Zhaoen Yang,Qian Gong,Li, Fuguang,Lingling Wang,Yuying Jin,Jianping Xi,Zhi Li,Wenqiang Qin,Zuoren Yang,Lili Lu,Quanjia Chen,Fuguang Li. 2018

[5]Haploid Induction via In vitro Gynogenesis in Tomato (Solanum lycopersicum L.). Zhao He,Wang Xiao-xuan,Du Yong-chen,Zhu De-wei,Guo Yan-mei,Gao Jian-chang,Li Fei,Snyder, John C.. 2014

[6]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[7]Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp pekinensis). Wang, Fengde,Ding, Qian,Li, Jingjuan,Zhang, Yihui,Li, Huayin,Gao, Jianwei,Qiu, Nianwei. 2014

[8]Genome-wide characterization and comparative analysis of the MLO gene family in cotton. Xiaoyan Wang,Qifeng Ma,Lingling Dou,Zhen Liu,Renhai Peng,Shuxun Yu. 2016

[9]Genome-wide Identification and analysis of the stress-resistance function of the TPS (Trehalose-6-Phosphate Synthase) gene family in cotton. Min Mu,Xu-Ke Lu,Jun-Juan Wang,De-Long Wang,Zu-Jun Yin,Shuai Wang,Wei-Li Fan,Wu-Wei Ye. 2016

[10]Phenylalanine ammonia-lyase gene families in cucurbit species: Structure, evolution, and expression. Dong Chun-juan,Cao Ning,Zhang Zhi-gang,Shang Qing-mao. 2016

[11]Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: evolution and differential expression during development and stress. Xu, Yingchun,Wang, Yanjie,Jin, Qijiang,Mattson, Neil,Yang, Liu. 2017

[12]Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L.. Shang, Qing-Mao,Li, Liang,Dong, Chun-Juan. 2012

[13]ANALYSIS OF MBOAT FAMILY REVEALS THE DIVERSITY OF MBOAT1 AMPLIFICATION IN SOLANACEAE. Wang, Peng,Gai, Jiangtao,Cao, Zhenmu,Wang, Peng,Gai, Jiangtao,Cao, Zhenmu,Xu, Shitao,Chen, Zhenxi,Luo, Zhaopeng,Jin, Lifeng,Li, Feng. 2015

[14]Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Li, Ai-Li,Zhu, Yuan-Fang,Tan, Xiao-Mei,Wang, Xiang,Wei, Bo,Guo, Han-Zi,Zhang, Zeng-Lin,Chen, Xiao-Bo,Zhao, Guang-Yao,Kong, Xiu-Ying,Jia, Ji-Zeng,Mao, Long,Tan, Xiao-Mei.

[15]Bacterial expression of a Trichosanthes kirilowii defensin (TDEF1) and its antifungal activity on Fusarium oxysporum. Jian Gui-Liang,Zhang Ying-Tao,Ai Tie-Min.

[16]Genome-wide analysis of NAM-ATAF1,2-CUC2 transcription factor family in Solanum lycopersicum. Su, Hongyan,Han, Liya,Zhang, Shizhong,Yin, Yanlei,Zhu, Dongzi.

[17]Genome-wide analysis of the PHB gene family in Glycine max (L.) Merr.. Song, Min,Peng, Xiangyong,Du, Caifu,Lei, Lei,Zhang, Tao,Xiang, Yang. 2017

[18]Genome-scale identification of MLO domain-containing genes in soybean (Glycine max L. Merr.). Shen, Qi,Zhao, Jinming,Xiang, Yang,Shen, Qi,Du, Caifu,Xiang, Yang,Qin, Xinrong,Cao, Jinxuan. 2012

[19]Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Guo, Meng,Liu, Jin-Hong,Lu, Jin-Ping,Zhai, Yu-Fei,Wang, Hu,Gong, Zhen-Hui,Lu, Ming-Hui,Wang, Shu-Bin. 2015

[20]Germanium-68 as an Adequate Tracer for Silicon Transport in Plants. Characterization of Silicon Uptake in Different Crop Species. Nikolic, Miroslav,Nikolic, Nina,Liang, Yongchao,Kirkby, Ernest A.,Romheld, Volker.

作者其他论文 更多>>