Global transcriptome profiles of Camellia sinensis during cold acclimation

文献类型: 外文期刊

第一作者: Wang, Xin-Chao

作者: Wang, Xin-Chao;Ma, Chun-Lei;Cao, Hong-Li;Yue, Chuan;Hao, Xin-Yuan;Chen, Liang;Ma, Jian-Qiang;Jin, Ji-Qiang;Yang, Ya-Jun;Wang, Xin-Chao;Ma, Chun-Lei;Cao, Hong-Li;Yue, Chuan;Hao, Xin-Yuan;Chen, Liang;Ma, Jian-Qiang;Jin, Ji-Qiang;Yang, Ya-Jun;Zhao, Qiong-Yi;Yue, Chuan;Li, Xuan;Zhao, Qiong-Yi;Zhang, Zong-Hong

作者机构:

关键词: Camellia Sinensis;Cold Acclimation;RNA-Seq;DGE;Genome-wide Expression Profiles;Tea Plants

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2013 年 14 卷

页码:

收录情况: SCI

摘要: Background: Tea is the most popular non-alcoholic health beverage in the world. The tea plant (Camellia sinensis (L.) O. Kuntze) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in tea plants. To elucidate the molecular mechanisms of cold acclimation, we employed RNA-Seq and digital gene expression (DGE) technologies to the study of genome-wide expression profiles during cold acclimation in tea plants. Results: Using the Illumina sequencing platform, we obtained approximately 57.35 million RNA-Seq reads. These reads were assembled into 216,831 transcripts, with an average length of 356 bp and an N50 of 529 bp. In total, 1,770 differentially expressed transcripts were identified, of which 1,168 were up-regulated and 602 down-regulated. These include a group of cold sensor or signal transduction genes, cold-responsive transcription factor genes, plasma membrane stabilization related genes, osmosensing-responsive genes, and detoxification enzyme genes. DGE and quantitative RT-PCR analysis further confirmed the results from RNA-Seq analysis. Pathway analysis indicated that the "carbohydrate metabolism pathway" and the "calcium signaling pathway" might play a vital role in tea plants' responses to cold stress. Conclusions: Our study presents a global survey of transcriptome profiles of tea plants in response to low, non-freezing temperatures and yields insights into the molecular mechanisms of tea plants during the cold acclimation process. It could also serve as a valuable resource for relevant research on cold-tolerance and help to explore the cold-related genes in improving the understanding of low-temperature tolerance and plant-environment interactions.

分类号:

  • 相关文献

[1]Comparative transcriptome profiling of Pyropia yezoensis (Ueda) MS Hwang & HG Choi in response to temperature stresses. Sun, Peipei,Mao, Yunxiang,Cao, Min,Kong, Fanna,Bi, Guiqi,Li, Guiyang,Wang, Li. 2015

[2]Transcriptome profiling and digital gene expression analysis of Nile tilapia (Oreochromis niloticus) infected by Streptococcus agalactiae. Zhang, Rui,Zhang, Li-li,Ye, Xing,Tian, Yuan-yuan,Sun, Cheng-fei,Lu, Mai-xin,Bai, Jun-jie,Zhang, Rui.

[3]Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). Li, Chun-Fang,Wang, Xin-Chao,Yao, Ming-Zhe,Chen, Liang,Yang, Ya-Jun,Zhu, Yan,Yu, Yao,Zhao, Qiong-Yi,Li, Xuan,Wang, Sheng-Jun,Luo, Da. 2015

[4]Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis). Li, Chun-Fang,Xu, Yan-Xia,Ma, Jian-Qiang,Jin, Ji-Qiang,Huang, Dan-Juan,Yao, Ming-Zhe,Ma, Chun-Lei,Chen, Liang,Li, Chun-Fang. 2016

[5]Novel insights into the molecular mechanisms underlying the resistance of Camellia sinensis to Ectropis oblique provided by strategic transcriptomic comparisons. Wang, Dan,Li, Chun-Fang,Ma, Chun-Lei,Chen, Liang.

[6]Transcriptome analysis and identification of induced genes in the response of Harmonia axyridis to cold hardiness. Tang, Bin,Liu, Xiao-Jun,Shi, Zuo-Kun,Shen, Qi-Da,Xu, Yan-Xia,Wang, Shi-Gui,Wang, Su,Zhang, Fan.

[7]Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. Zeng, Xingquan,Wei, Zexiu,Yuan, Hongjun,Wang, Yulin,Xu, Qijun,Tang, Yawei,Nyima, Tashi,Yuan, Hongjun,Wang, Yulin,Xu, Qijun,Tang, Yawei,Nyima, Tashi,Bai, Lijun. 2016

[8]Genome-wide comparative analysis of digital gene expression tag profiles during maize ear development. Liu, Hongjun,Qin, Cheng,Zhang, Yongzhong,Liu, Sisi,Shen, Yaou,Lin, Haijian,Zhang, Zhiming,Pan, Guangtang,Yang, Xuerong,Liao, Xinhui,Zhou, Huangkai,Zuo, Tao,Qin, Cheng,Cao, Shiliang,Dong, Ling,Luebberstedt, Thomas.

[9]Expression and regulation of a cold-responsive gene, CsCBF in Citrus sinensis (L.) Osbeck under low temperature, high salinity and abscisic acid. He, L. G.,Jiang, Y. C.,Wang, H. L.,Xu, M.,Sun, Z. H.. 2016

[10]Differentially expressed genes under cold acclimation in Physcomitrella patens. Sun, Ming-Ming,Li, Lin-Hui,Xie, Hua,Ma, Rong-Cai,He, Yi-Kun. 2007

[11]Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Yue, Chuan,Cao, Hong-Li,Wang, Lu,Zhou, Yan-Hua,Huang, Yu-Ting,Hao, Xin-Yuan,Wang, Yu-Chun,Wang, Bo,Yang, Ya-Jun,Wang, Xin-Chao,Yue, Chuan,Cao, Hong-Li,Wang, Lu,Zhou, Yan-Hua,Huang, Yu-Ting,Hao, Xin-Yuan,Wang, Yu-Chun,Wang, Bo,Yang, Ya-Jun,Wang, Xin-Chao,Wang, Lu,Hao, Xin-Yuan,Wang, Yu-Chun,Wang, Bo,Yang, Ya-Jun,Wang, Xin-Chao.

[12]Autumn dormancy regulates the expression of cas18, vsp and corF genes during cold acclimation of lucerne (Medicago sativa L.). Liu, Zhi-ying,Liu, Zhi-ying,Li, Xi-liang,Yan, Ya-fei,Gao, Run,Sun, Qi-zhong,Wang, Zong-li,Yang, Guo-feng,Sun, Juan,Wang, Zong-li.

[13]Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa. Chen, Jing,Han, Guiqing,Han, Guiqing,Shang, Chen,Li, Jikai,Zhang, Hailing,Liu, Fengqi,Wang, Jianli,Liu, Huiying,Zhang, Yuexue. 2015

[14]Insights from the Cold Transcriptome and Metabolome of Dendrobium officinale: Global Reprogramming of Metabolic and Gene Regulation Networks during Cold Acclimation. Wu, Zhi-Gang,Jiang, Wu,Chen, Song-Lin,Tao, Zheng-Ming,Jiang, Cheng-Xi,Chen, Song-Lin,Mantri, Nitin. 2016

[15]Changes in membrane-associated H+-ATPase activities and amounts in young grape plants during the cross adaptation to temperature stresses. Zhang, JH,Liu, YP,Pan, QH,Zhan, JC,Wang, XQ,Huang, WD.

[16]Metabolite profiling of tea (Camellia sinensis L.) leaves in winter. Shen, Jiazhi,Wang, Yu,Ding, Zhaotang,Hu, Jianhui,Zheng, Chao,Li, Yuchen,Chen, Changsong,Shen, Jiazhi,Wang, Yu,Ding, Zhaotang,Hu, Jianhui,Zheng, Chao,Li, Yuchen.

[17]VaCBF1 from Vitis amurensis associated with cold acclimation and cold tolerance. Dong, Chang,Zhang, Zhen,Ren, Junpeng,Huang, Jinfeng,Cai, Binhua,Tao, Jianmin,Dong, Chang,Qin, Yang,Wang, Bailin,Lu, Huiling.

[18]Accumulation and distribution of As in different tissues of Camellia sinensis. Xiong, Huabin,Duan, Changqun,Fu, Denggao,Yan, Kai,He, Feng,Xiong, Huabin,Liang, Mingzhi. 2014

[19]Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Zeng, Lanting,Zhou, Ying,Fu, Xiumin,Mei, Xin,Cheng, Sihua,Gui, Jiadong,Yang, Ziyin,Zeng, Lanting,Zhou, Ying,Fu, Xiumin,Mei, Xin,Cheng, Sihua,Gui, Jiadong,Yang, Ziyin,Zeng, Lanting,Cheng, Sihua,Gui, Jiadong,Yang, Ziyin,Dong, Fang,Tang, Jinchi,Tang, Jinchi,Ma, Shengzhou. 2017

[20]Domestication Origin and Breeding History of the Tea Plant (&ITCamellia&IT &ITsinensis&IT) in China and India Based on Nuclear Microsatellites and cpDNA Sequence Data. Meegahakumbura, Muditha K.,Wambulwa, Moses C.,Li, Miao-Miao,Liu, Jie,Li, De-Zhu,Gao, Lian-Ming,Meegahakumbura, Muditha K.,Wambulwa, Moses C.,Yang, Jun-Bo,Li, De-Zhu,Meegahakumbura, Muditha K.,Wambulwa, Moses C.,Li, Miao-Miao,Li, De-Zhu,Meegahakumbura, Muditha K.,Wambulwa, Moses C.,Thapa, Kishore K.,Sun, Yong-Shuai,Moller, Michael,Xu, Jian-Chu,Liu, Ben-Ying. 2018

作者其他论文 更多>>