Mitigating nitrous oxide emissions from a maize-cropping black soil in northeast China by a combination of reducing chemical N fertilizer application and applying manure in autumn

文献类型: 外文期刊

第一作者: Guo, Yanling

作者: Guo, Yanling;Chen, Guanxiong;Kou, Yongping;Xu, Hui;Guo, Yanling;Kou, Yongping;Luo, Liangguo

作者机构:

关键词: maize cropping soil;N2O;chemical N fertilizer;manure;grain yield

期刊名称:SOIL SCIENCE AND PLANT NUTRITION ( 影响因子:2.389; 五年影响因子:2.525 )

ISSN: 0038-0768

年卷期: 2013 年 59 卷 3 期

页码:

收录情况: SCI

摘要: Nitrous oxide (N2O) emissions from agricultural soils, mainly caused by chemical nitrogen (N) fertilizer inputs, are major sources of N2O in Chinese terrestrial ecosystems. Thus, attempts to reduce N2O emissions from agricultural soils by optimizing N applications are receiving increasing attention. Further, organic fertilizers are being increasingly used in China to improve crop production/quality and prevent or reduce soil degradation. However, organic and chemical fertilizers are often both applied in spring in northeast China, which promotes N2O emissions and may be sub-optimal. Therefore, we hypothesized that reducing applications of chemical fertilizer N and applying manure in autumn could be an effective strategy for mitigating N2O emissions from cropped soils in the region. To test this hypothesis, we established a field trial to investigate the effects of different combinations of chemical N fertilizer applications and animal manure in autumn on both N2O emissions and maize (Zea mays L.) grain yields in northeast China. The treatments, expressed as NxMy (where Nx and My denote the total amounts of chemical fertilizer nitrogen (N) and manure (M) applied in kg N ha(-1) and m(3)Mha(-1), respectively), were N0M0, N230M0, N270M12, N230M15, N320M18 in 2010 and N0M0, N230M0, N200M12, N200M15, N280M18 in 2011. Measurements of the resulting N2O emissions showed that pulse fluxes occurred after each chemical N fertilizer application, but not after manure inputs in autumn or during soil-thawing periods in the following spring. Emission factors for the chemical fertilizer N were on average 1.07% (1.001.10%) and 1.14% (0.491.83%) in 2010 and 2011, respectively. Furthermore, by comparing the nine pairs of fertilization treatments, the relative increase in cumulative nitrous oxide-nitrogen (N2O-N) emissions was found to be proportional to the relative increase in urea application, but independent of the amount of autumn-applied manure. These findings imply that N2O emissions from fertilized agricultural soils in northeast China could be mitigated by supplying manure in the autumn and reducing the total amount of chemical N fertilizer applied in the following year. Although no significant difference in maize grain yield was found among the fertilization treatments, the grain yield-scaled N2O emissions for the treatments with a lower chemical N application (e.g., N230M15 and N200M15 treatments) were significantly lower than those with a higher chemical N application (e.g., N320M18 and N280M18 treatments). Meanwhile, under the condition of the same application amount of chemical fertilizer N, the grain yield-scaled N2O emission decreased with the increase of manure application rate. Thus, the results support the hypothesis that combining reductions in chemical N fertilizer and applying manure in autumn could be an effective strategy for mitigating N2O emissions from N-fertilized soils in northeast China.

分类号:

  • 相关文献

[1]Nitrogen efficiency in long-term wheat maize cropping systems under diverse field sites in China. Liu, Jie,Li, Xiuying,Ma, Yibing,Liu, Hua,Huang, Shaomin,Yang, Xueyun,Wang, Boren.

[2]Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Bi, Lidong,Zhang, Bin,Zhang, Jiguang,Liang, Yin,Liu, Guangrong,Li, Zuzhang,Liu, Yiren,Ye, Chuan,Yu, Xichu,Lai, Tao,Yin, Jianmin.

[3]Integrative impacts of soil tillage on crop yield, N use efficiency and greenhouse gas emission in wheat-corn cropping system. Latifmanesh, H.,Zheng, C. Y.,Song, Z. W.,Deng, A. X.,Zhang, B. M.,Zhang, W. J.,Huang, J. L.,Li, L.,Chen, Z. J.,Zheng, Y. T.. 2016

[4]Estimation of N-2 and N2O ebullition from eutrophic water using an improved bubble trap device. Gao, Yan,Liu, Xinhong,Wang, Yan,Guo, Junyao,Zhang, Zhenhua,Yan, Shaohua,Yi, Neng. 2013

[5]Nitrous Oxide and Methane Fluxes During the Maize Season Under Optimized Management in Intensive Farming Systems of the North China Plain. Shi Yue-Feng,Wu Wen-Liang,Meng Fan-Qiao,Zheng Liang,Wang Da-Peng,Ye Hui,Shi Yue-Feng,Wang Da-Peng,Ding Guang-Wei.

[6]Nitrous oxide emissions following seasonal freeze-thaw events from arable soils in Northeast China. Chen Zhe,Yang Shi-qi,Zhang Ai-ping,Zhang Qing-wen,Yang Zheng-li,Chen Zhe,Wang Wen-ying,Jing Xin,Song Wei-min,Mi Zhao-rong. 2018

[7]Estimates of N2O Emissions and Mitigation Potential from a Spring Maize Field Based on DNDC Model. Li Hu,Qiu Jian-Jun,Wang Li-gang,Xu Ming-yi,Liu Zhi-qiang,Wang Wei. 2012

[8]Fate of N-15 derived from composts and urea in soils under different long-term N management in pot experiments. Luo, LG,Kondo, M,Itoh, S.

[9]Measurements of N2O emissions from different vegetable fields on the North China Plain. Diao, Tiantian,Guo, Liping,Yan, Hongliang,Lin, Miao,Zhang, He,Lin, Erda,Xie, Liyong,Lin, Miao,Zhang, He,Lin, Jia. 2013

[10]Enhancement of farmland greenhouse gas emissions from leakage of stored CO2: Simulation of leaked CO2 from CCS. Zhang, Xueyan,Ma, Xin,Li, Yue,Ma, Xin,Li, Yue,Wu, Yang.

[11]Nitrous Oxide Flux from Long-term Fertilized Black Soils in A Snowfall Process. Wang Lianfeng,Han Zuoqiang,Sun Xin,Zhang Xilin,Wang Lianfeng,Cai Yanjiang. 2010

[12]Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Feng, Jinfei,Chen, Changqing,Zhang, Yi,Zhang, Weijian,Feng, Jinfei,Song, Zhenwei,Deng, Aixing,Zheng, Chengyan,Zhang, Weijian. 2013

[13]Integrated management practices significantly affect N2O emissions and wheat-maize production at field scale in the North China Plain. Shi, Yuefeng,Wu, Wenliang,Meng, Fanqiao,Zheng, Liang,Zhang, Zhihua,Wang, Dapeng.

[14]Long-term pig manure application reduces the requirement of chemical phosphorus and potassium in two rice-wheat sites in subtropical China. Xu, M.,He, X.,He, X.,He, X.,He, X.,Li, S.,Sun, X.. 2011

[15]Cadmium Accumulation in soil and Celery from a Long-Term Manure Applied Field Experiment. Sun, Qinping,Li, Jijin,Liu, Bensheng,Gao, Lijuan,Xu, Junxiang,Zou, Guoyuan,Liu, Baocun. 2013

[16]Nitrogen management to reduce yield-scaled global warming potential in rice. Liang, X. Q.,Ye, Y. S.,Ji, Y. J.,Tian, G. M.,Li, H.,Wang, S. X.,van Kessel, C.,Linquist, B. A.. 2013

[17]Amelioration of aluminum toxicity in red soil through use of barnyard and green manure. Qin, RJ,Chen, FX. 2005

[18]Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: II nutrient balances and soil fertility. Wang, Xiaobin,Hoogmoed, Willem B.,Cai, Dianxiong,Perdok, Udo D.,Oenema, Oene. 2007

[19]Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Li Hui,Feng Wen-ting,Sun Nan,Xu Ming-gang,Li Hui,Feng Wen-ting,He Xin-hua,Zhu Ping,Gao Hong-jun. 2017

[20]Effect of long-term fertilization on soil aggregate-associated dissolved organic nitrogen on sloping cropland of purple soil. Hua, K. K.,Guo, X. S.,Wang, D. Z.,Guo, Z. B.,Hua, K. K.,Zhu, B.,Wang, X. G.. 2014

作者其他论文 更多>>