Wheat genotypes differing in aluminum tolerance differ in their growth response to CO2 enrichment in acid soils

文献类型: 外文期刊

第一作者: Tian, Qiuying

作者: Tian, Qiuying;Zhang, Xinxin;Gao, Yan;Bai, Wenming;Zhang, Wen-Hao;Ge, Feng;Ge, Feng;Zhang, Wen-Hao;Ma, Yibing

作者机构:

关键词: Acid soils;Aluminum tolerance;elevated CO2;growth response;malate efflux;wheat (Triticum aestivum L;)

期刊名称:ECOLOGY AND EVOLUTION ( 影响因子:2.912; 五年影响因子:3.271 )

ISSN: 2045-7758

年卷期: 2013 年 3 卷 6 期

页码:

收录情况: SCI

摘要: Aluminum (Al) toxicity is a major factor limiting plant growth in acid soils. Elevated atmospheric CO2 [CO2] enhances plant growth. However, there is no report on the effect of elevated [CO2] on growth of plant genotypes differing in Al tolerance grown in acid soils. We investigated the effect of short-term elevated [CO2] on growth of Al-tolerant (ET8) and Al-sensitive (ES8) wheat plants and malate exudation from root apices by growing them in acid soils under ambient [CO2] and elevated [CO2] using open-top chambers. Exposure of ET8 plants to elevated [CO2] enhanced root biomass only. In contrast, shoot biomass of ES8 was enhanced by elevated [CO2]. Given that exudation of malate to detoxify apoplastic Al is a mechanism for Al tolerance in wheat plants, ET8 plants exuded greater amounts of malate from root apices than ES8 plants under both ambient and elevated [CO2]. These results indicate that elevated [CO2] has no effect on malate exudation in both ET8 and ES8 plants. These novel findings have important implications for our understanding how plants respond to elevated [CO2] grown in unfavorable edaphic conditions in general and in acid soils in particular.

分类号:

  • 相关文献

[1]Deep Roots are Pivotal for Regulating Post-Anthesis Leaf Senescence in Wheat (Triticum aestivum L.). Kong, L.,Si, J.,Sun, M.,Feng, B.,Zhang, B.,Li, S.,Wang, Z.,Wang, F.,Wang, F.. 2013

[2]Mapping QTLs for salt tolerance with additive, epistatic and QTLxtreatment interaction effects at seedling stage in wheat. Xu, Y.,Zhang, X.,Xu, H.,An, D.,Li, S.,Li, L.. 2013

[3]Starter and subsequent grower response of Pekin ducks to low-protein diets in starter phase. Xie, M.,Jiang, Y.,Tang, J.,Zhang, Q.,Huang, W.,Hou, S. S.. 2017

[4]Predicting plant response to arbuscular mycorrhizas: The role of host functional traits. Yang, Haishui,Xu, Jianglai,Guo, Yi,Dai, Yajun,Bian, Xinmin,Koide, Roger T.,Xu, Mingmin,Bian, Liping,Zhang, Qian.

[5]Long-Term Evaluation of Manure Application on Maize Yield and Nitrogen Use Efficiency in China. Duan, Yinghua,Xu, Minggang,Wang, Bairen,Yang, Xueyun,Huang, Shaomin,Gao, Suduan.

[6]Aluminium-phosphorus interactions in plants growing on acid soils: does phosphorus always alleviate aluminium toxicity?. Chen, Rong Fu,Zhang, Fu Lin,Zhang, Qi Ming,Sun, Qing Bin,Dong, Xiao Ying,Shen, Ren Fang,Zhang, Fu Lin,Zhang, Qi Ming,Sun, Qing Bin.

[7]TaALMT1 promoter sequence compositions, acid tolerance, and Al tolerance in wheat cultivars and landraces from Sichuan in China. Dai, S. F.,Liu, D. C.,Wei, Y. M.,Zheng, Y. L.,Wen, D. J.,Zhao, L.,Yan, Z. H.,Pu, Z. J.. 2013

[8]Aluminum tolerance in Centipedegrass (Eremochloa ophiuroides [Munro] Hack.): Excluding Al from root. Yan, Jun,Chen, Jingbo,Liu, Jianxiu,Yan, Jun,Yu, Li. 2012

[9]Identifying aluminum tolerance in rice with a molecular marker. Zhang, Peng,Zhong, Zhengzheng,Tong, Hanhua,Zhong, Kaizhen. 2017

[10]Identification of quantitative trait loci associated with aluminum tolerance in rice (Oryza sativa L.). Xue, Yong,Wan, Jianmin,Jiang, Ling,Wang, Chunming,Liu, Linglong,Zhang, Yuan-ming,Zhai, Huqu. 2006

[11]Different Aluminum Tolerance among Indica, Japonica and Hybrid Rice Varieties. Shu Chang,Wu Jing-hao,Shi Gao-ling,Lou Lai-qing,Deng Jun-xia,Cai Qing-sheng,Wan Jian-lin. 2015

[12]Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Dai, Jian,Dai, Jian,Bai, Guihua,Zhang, Dadong,Dai, Jian,Hong, Delin. 2013

[13]Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. He, Long-Fei,Gu, Ming-Hua,Li, Xiao-Feng,He, Hu-Yi. 2012

[14]Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). Zhu, Haifeng,Zhu, Yifang,Zou, Jianwen,Zhao, Fang-Jie,Huang, Chao-Feng,Wang, Hua. 2015

[15]The genetic basic and fine-mapping of a stable quantitative-trait loci for aluminium tolerance in rice. Xue, Y.,Jiang, L.,Su, N.,Wang, J. K.,Deng, P.,Ma, J. F.,Zhai, H. Q.,Wan, J. M..

[16]Effects of elevated CO2 on the nutrient compositions and enzymes activities of Nilaparvata lugens nymphs fed on rice plants. Wu Gang,Zhuang Jing,Zhao WanYun,Hua HongXia,Huang WenKun,Su Li,Li JunSheng,Xiao NengWen,Xiong YanFei. 2012

[17]Tomato-Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata. Li, Xin,Sun, Zenghui,Shao, Shujun,Zhang, Shuai,Ahammed, Golam Jalal,Zhang, Guanqun,Jiang, Yuping,Zhou, Jie,Xia, Xiaojian,Zhou, Yanhong,Yu, Jingquan,Shi, Kai,Li, Xin,Jiang, Yuping,Yu, Jingquan,Shi, Kai.

[18]Combined effects of elevated CO2 and Cd-contaminated soil on the growth, gas exchange, antioxidant defense, and Cd accumulation of poplars and willows. Guo, Baohua,Dai, Songxiang,Wang, Ruigang,Guo, Junkang,Ding, Yongzhen,Xu, Yingming,Wang, Ruigang,Guo, Junkang,Ding, Yongzhen,Xu, Yingming.

[19]Climate change impacts on crop yield and quality with CO2 fertilization in China. Lin, ED,Xiong, W,Ju, H,Xu, YL,Li, Y,Bai, LP,Xie, LY.

[20]Effects of elevated CO2 on rice grain yield and yield components: Is non-flooded plastic film mulching better than traditional flooding?. Li, Yuting,Han, Xue,Feng, Yongxiang,Lin, Erda,Li, Yingchun,Li, Yuting,Han, Xue,Feng, Yongxiang,Lin, Erda,Li, Yingchun,Lam, Shu Kee,Hao, Xingyu.

作者其他论文 更多>>