Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp M231 using a computationally aided method

文献类型: 外文期刊

第一作者: Tian, Jian

作者: Tian, Jian;Wang, Ping;Huang, Lu;Chu, Xiaoyu;Wu, Ningfeng;Fan, Yunliu

作者机构:

关键词: Methyl parathion hydrolase;Site evolutionary entropy;Thermostability;Prethermut;Unfolding free energy

期刊名称:APPLIED MICROBIOLOGY AND BIOTECHNOLOGY ( 影响因子:4.813; 五年影响因子:4.697 )

ISSN: 0175-7598

年卷期: 2013 年 97 卷 7 期

页码:

收录情况: SCI

摘要: Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from Ochrobactrum sp. M231 [Ochr-methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within Ochr-MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The T (m) and T (50) of the mutant enzyme were 11.7 and 10.2 A degrees C higher, respectively, than that of the WT enzyme. The success of this design methodology for Ochr-MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.

分类号:

  • 相关文献

[1]An intramolecular disulfide bond is required for the thermostability of methyl parathion hydrolase, OPHC2. Chu, Xiao-yu,Tian, Jian,Wu, Ning-feng,Fan, Yun-liu.

[2]Improving the thermostability of a methyl parathion hydrolase by adding the ionic bond on protein surface. Su, Yidan,Tian, Jian,Wang, Ping,Chu, Xiaoyu,Wu, Ningfeng,Fan, Yunliu,Su, Yidan,Liu, Guoan.

[3]Enhanced secretion of a methyl parathion hydrolase in Pichia pastoris using a combinational strategy. Wang, Ping,Huang, Lu,Jiang, Hu,Tian, Jian,Chu, Xiaoyu,Wu, Ningfeng. 2015

[4]Improving the acidic stability of a methyl parathion hydrolase by changing basic residues to acidic residues. Huang, Lu,Yang, Peilong,Yao, Bin,Huang, Lu,Wang, Ping,Tian, Jian,Jiang, Huachen,Wu, Ningfeng,Fan, Yunliu.

[5]A two-step discriminated method to identify thermophilic proteins. Tang, Hua,Cao, Ren-Zhi,Wang, Wen,Liu, Tie-Shan,Wang, Li-Ming,He, Chun-Mei. 2017

[6]An acid and highly thermostable xylanase from Phialophora sp G5. Zhang, Fan,Shi, Pengjun,Bai, Yingguo,Luo, Huiying,Yuan, Tiezheng,Huang, Huoqing,Yang, Peilong,Yao, Bin,Zhang, Fan,Miao, Lihong. 2011

[7]Purification and characterization of a psychrophilic catalase from Antarctic Bacillus. Wang, Wei,Sun, Mi,Zhang, Bin,Liu, Wanshun. 2008

[8]Heterologous expression of a gene encoding a thermostable beta-galactosidase from Alicyclobacillus acidocaldarius. Yuan, Tiezheng,Yang, Peilong,Wang, Yaru,Meng, Kun,Luo, Huiying,Yao, Bin,Zhang, Wei,Wu, Ningfeng,Fan, Yunliu.

[9]The disruption of two salt bridges of the cold-active xylanase XynGR40 results in an increase in activity, but a decrease in thermostability. Wang, Guozeng,Wu, Jingjing,Lin, Juan,Ye, Xiuyun,Yao, Bin.

[10]A novel, alkali-tolerant thermostable xylanase from Saccharomonospora viridis: direct gene cloning, expression and enzyme characterization. Wang, Ziyuan,Jin, Yi,Wu, Huijun,Xie, Xiangming,Tian, Zhaofeng,Wu, Yuying.

[11]Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis. Zheng, Hongchen,Liu, Yihan,Han, Yang,Lu, Fuping,Zheng, Hongchen,Liu, Yihan,Sun, Mingzhe,Han, Yang,Wang, Jianling,Lu, Fuping,Zheng, Hongchen,Sun, Junshe,Liu, Yihan,Wang, Jianling,Sun, Mingzhe,Lu, Fuping.

[12]Structure-Based Design of Mucor pusillus Pepsin for the Improved Ratio of Clotting Activity/Proteolytic Activity in Cheese Manufacture. Zhang, Jie,Sun, Yonghai,Luo, Quan,Zhang, Jie,Li, Zhuolin,Li, Tiezhu,Wang, Tuoyi.

[13]Genetic and biochemical characterization of a protease-resistant mesophilic beta-mannanase from Streptomyces sp S27. Shi, Pengjun,Yuan, Tiezheng,Zhao, Junqi,Huang, Huoqing,Luo, Huiying,Meng, Kun,Wang, Yaru,Yao, Bin.

[14]IMPROVEMENT ON THE THERMOSTABILITY AND ACTIVITY OF APX1 FROM ENERGY PLANT JATROPHA CURCAS L. BY HYPER-ACIDIC FUSION PARTNERS. Zhang, Mengru,Yang, Yumei,Li, Xujuan,Wang, Haibo,Yang, Shuanglong,Wang, Shasha,Gong, Ming,Zou, Zhurong,Li, Xujuan,Wang, Haibo. 2014

[15]A novel thermophilic endo-beta-1,4-mannanase from Aspergillus nidulans XZ3: functional roles of carbohydrate-binding module and Thr/Ser-rich linker region. Lu, Haiqiang,Luo, Huiying,Shi, Pengjun,Huang, Huoqing,Meng, Kun,Yang, Peilong,Yao, Bin. 2014

[16]Structural Insights into the Thermophilic Adaption Mechanism of Endo-1,4-beta-Xylanase from Caldicellulosiruptor owensensis. Liu, Xin,Xin, Fengjiao,Wen, Boting,Gu, Tianyi,Wang, Fengzhong,Sun, Lichao,Liu, Tengfei,Shi, Xinyuan,Zhang, Yuebin,Mi, Shuofu. 2018

[17]Concurrent mutations in six amino acids in beta-glucuronidase improve its thermostability. Xiong, Ai-Sheng,Peng, Ri-He,Cheng, Zong-Ming,Li, Yi,Liu, Jin-Ge,Zhuang, Jing,Gao, Feng,Xu, Fang,Qiao, Yu-Shan,Zhang, Zhen,Chen, Jian-Min,Yao, Quan-Hong. 2007

[18]Two neutral thermostable cellulases from Phialophora sp G5 act synergistically in the hydrolysis of filter paper. Zhao, Junqi,Shi, Pengjun,Li, Zhongyuan,Yang, Peilong,Luo, Huiying,Bai, Yingguo,Wang, Yaru,Yao, Bin. 2012

[19]Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Wang, Yawei,Fu, Zheng,Xiong, Hairong,Wang, Yawei,Fu, Zheng,Huang, Huoqing,Yao, Bin,Zhang, Huashan,Turunen, Ossi.

[20]Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025. Kui, Hong,Luo, Huiying,Shi, Pengjun,Bai, Yingguo,Yuan, Tiezheng,Wang, Yaru,Yang, Peilong,Yao, Bin,Kui, Hong,Dong, Shouliang.

作者其他论文 更多>>