Phenological responses of maize to changes in environment when grown at different latitudes in China
文献类型: 外文期刊
第一作者: Liu, Yuee
作者: Liu, Yuee;Xie, Ruizhi;Hou, Peng;Li, Shaokun;Zhang, Houbao;Ming, Bo;Long, Haili;Liang, Shumin
作者机构:
关键词: Maize;Phenological responses;GDD;Photoperiod;Latitude;Climatic factor;North spring maize region
期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.224; 五年影响因子:6.19 )
ISSN: 0378-4290
年卷期: 2013 年 144 卷
页码:
收录情况: SCI
摘要: Environmental conditions greatly affect the growth of maize. To examine differences in phenological responses of maize (Zea mays L.) to climatic factors under different environmental conditions as induced by latitude, experiments were conducted from 2007 to 2010 at 34 sites in seven Chinese provinces located in the north spring maize region of China between latitudes 35 degrees 11' and 48 degrees 08'N in the cultivation of hybrid zhengdan958 (ZD958). Latitude is an important geographical factor which significantly affects temperature, sunshine hours, and the duration of crop growth. The findings of this study indicate that for every 10 increase in the latitude, northward, the growth durations of sowing to emergence and emergence to silking were significantly increased by 0.7 d and 1.25 d, respectively as a consequence of lowering temperatures (mean, maximum, and minimum temperatures). Reproductive growth duration (silking to maturity), which was significantly correlated with the precipitation, decreased by 0.8 d with each 1 degrees increase in latitude northward. At higher latitudes, the number of growing degree days (GDD) of maize vegetative growth duration (emergence to silking) was significantly higher, and the GDD of the reproductive growth duration were significantly lower. The average photoperiod during the photoperiod-sensitive phase of maize development across all the experimental sites was 14.9 h with a range of 13.7-15.6 h. Total leaf numbers increased from 18.7 to 23.7 with an average of 21.0 across all experimental sites. Significant and positive linear relationships were found to occur between both latitude and photoperiods and latitude and total leaf number. In the north China spring maize region, the mean growth duration of ZD958 was 143.73 d, which constituted 82.8% of the frost free period, the percentage increasing with higher latitude. These findings strongly indicate that in order to ensure high and stable production of maize in the north spring maize region of China, with its limited heat resources, especially in the high-latitude regions, there is a need to cultivate short-growth-duration cultivars. (C) 2013 Elsevier B.V. All rights reserved.
分类号:
- 相关文献
作者其他论文 更多>>
-
Increasing Planting Density and Optimizing Irrigation to Improve Maize Yield and Water-Use Efficiency in Northeast China
作者:Shen, Dongping;Zhou, Linli;Fang, Liang;Wang, Zhen;Li, Shaokun;Shen, Dongping;Wang, Keru;Zhou, Linli;Fang, Liang;Wang, Zhen;Fu, Jiale;Zhang, Tingting;Liang, Zhongyu;Xie, Ruizhi;Ming, Bo;Hou, Peng;Xue, Jun;Zhang, Guoqiang;Li, Jianmin;Kang, Xiaojun
关键词:spring maize; varieties; planting density; irrigation; yield; water-use efficiency
-
Combination of magnetic field and ultraviolet for fouling control in saline wastewater distribution systems
作者:Liu, Zeyuan;Xiao, Yang;Zhou, Yunpeng;Hou, Peng;Zha, Yingdong;Li, Yunkai;Liu, Zeyuan;Xiao, Yang;Zhou, Yunpeng;Hou, Peng;Zha, Yingdong;Li, Yunkai;Liu, Zeyuan;Yu, Ruihong;Qu, Shen;Liu, Zeyuan;Yu, Ruihong;Qu, Shen;Muhammad, Tahir;Ma, Changjian
关键词:Saline wastewater; Biofouling; Particulates; Precipitates; Ultraviolet; Magnetic field
-
Optimizing Maize Yield and Resource Efficiency Using Surface Drip Fertilization in Huang-Huai-Hai: Impact of Increased Planting Density and Reduced Nitrogen Application Rate
作者:Wu, Liqian;Zhang, Guoqiang;Yan, Zhenhua;Gao, Shang;Xu, Honggen;Zhou, Jiaqiang;Li, Dianjun;Liu, Yi;Xie, Ruizhi;Ming, Bo;Xue, Jun;Hou, Peng;Li, Shaokun;Wang, Keru;Wu, Liqian;Zhang, Guoqiang;Yan, Zhenhua;Gao, Shang;Xu, Honggen;Zhou, Jiaqiang;Li, Dianjun;Liu, Yi;Xie, Ruizhi;Ming, Bo;Xue, Jun;Hou, Peng;Li, Shaokun;Wang, Keru
关键词:surface drip fertilization; planting density; N application rate; yield; water and nitrogen use efficiency
-
Comparison and Optimal Method of Detecting the Number of Maize Seedlings Based on Deep Learning
作者:Jia, Zhijie;Xue, Jianfu;Zhang, Xinlong;Yang, Hongye;Yu, Xun;Feng, Dayun;Gao, Kexin;Ming, Bo;Li, Shaokun;Lu, Yuan;Liu, Jiale;Nie, Chenwei
关键词:unmanned aerial vehicle; maize seedling; object detection; counting
-
Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density
作者:Yan, Yanyan;Duan, Fengying;Li, Xia;Hou, Peng;Zhao, Ming;Li, Shaokun;Zhou, Wenbin;Yan, Yanyan;Dai, Tingbo;Duan, Fengying;Li, Xia;Zhou, Wenbin;Zhao, Rulang;Wang, Yonghong
关键词:
-
Integrated Transcriptome and GWAS Analysis to Identify Candidate Genes for Ustilago maydis Resistance in Maize
作者:Yin, Bingyu;Xu, Linjie;Li, Jianping;Zheng, Yunxiao;Zhu, Liying;Jia, Xiaoyan;Zhao, Yongfeng;Guo, Jinjie;Zheng, Yunxiao;Song, Weibin;Hou, Peng;Song, Wei
关键词:maize; Ustilago maydis; transcriptome sequencing; genome-wide association analysis; candidate genes
-
Higher yields of modern maize cultivars are not associated with coordinated light and N distribution within the canopy
作者:Fan, Panpan;Anten, Niels P. R.;Evers, Jochem B.;Li, Yaoyao;Li, Shaokun;Ming, Bo;Xie, Ruizhi;Fan, Panpan
关键词:Canopy architecture; Light distribution; Nitrogen distribution; Breeding selection