Litter quantity confers soil functional resilience through mediating soil biophysical habitat and microbial community structure on an eroded bare land restored with mono Pinus massoniana

文献类型: 外文期刊

第一作者: Zhang, Bin

作者: Zhang, Bin;Yao, Shuihong;Zhang, Bin;Wang, Huili;Yao, Shuihong;Bi, Lidong

作者机构:

关键词: Soil restoration;Microbial community structure;Soil microbial resilience;Soil microbial stability;Soil structure;Litter quantity

期刊名称:SOIL BIOLOGY & BIOCHEMISTRY ( 影响因子:7.609; 五年影响因子:8.312 )

ISSN: 0038-0717

年卷期: 2013 年 57 卷

页码:

收录情况: SCI

摘要: Soils have an intrinsic ability to adapt to environmental perturbations compounded by global warming and soil pollution to continuously deliver soil functions, but little is known about how a severely degraded soil regains its functional stability after restoration of vegetation. Surface soils were sampled along slopes in a long-term trial where mono Pinus massoniana was transplanted since 1987 on an eroded bare land and pine litter was either protected or removed on the slopes. We hypothesized that litter quantity would drive changes in soil properties rather than soil microbial communities, which would be main factors in controlling soil functional stability. The specific objectives of this study were: 1) to evaluate the effects of litter management on soil properties, soil microbial community structure and functional stability and 2) to explore the relative role of soil properties and microbial community structure in controlling soil functional stability. The functional stability (resistance and resilience) was determined by measuring how the short-term decomposition of added barley (Hordeum vulgare) powder changed over 28-days following copper addition and heating. Community-level physiological profiles (CLPP) and phospholipid fatty acid (PLFA) profiles were measured to characterize soil microbial community structure. Litter quantity was significantly (P < 0.05) and positively correlated with soil organic carbon (SOC) and microbial biomass carbon (SMB-C) concentration, soil structural properties (porosity and aggregate stability) and the resilience to both perturbations. Soil microbial community structure was significantly separated in two different ways. One was associated with the quantity of litter, SOC concentration and its mediated soil properties (SMB and non-capillary porosity). Another was associated with SOC quality and its mediated soil properties (aggregate stability). These biophysical soil properties (SMB, SOC and capillary porosity) were significantly correlated with the resilience to heating and the resistance and resilience to copper addition. The separations of soil microbial community structure driven by litter quality were significantly correlated with the resistance to heating and the resilience to copper addition. This result suggests that the degraded soil could regain its functional stability after re-vegetation due to the concordant development of soil biophysical habitat and soil microbial community structure through continuous organic inputs. Maintaining litter on floor against anthropogenic collection has an important ecological value. (C) 2012 Elsevier Ltd. All rights reserved.

分类号:

  • 相关文献

[1]Manure substitution of mineral fertilizers increased functional stability through changing structure and physiology of microbial communities. Yue, Xianlu,Shi, Andong,Yao, Shuihong,Zhang, Bin,Zhang, Jiguang.

[2]Physical response of rigid and non-rigid soils to analogues of biological exudates. Peng, X.,Hallett, P. D.,Zhang, B.,Horn, R..

[3]Visual assessment of soil structure: Evaluation of methodologies on sites in Canada, China and Germany Part I: Comparing visual methods and linking them with soil physical data and grain yield of cereals. Mueller, Lothar,Schindler, Uwe,Kay, Bev D.,Hu, Chunsheng,Li, Yong,Behrendt, Axel,Shepherd, T. Graham,Ball, Bruce C.. 2009

[4]Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil?. Zhang, Bin,Zhang, Bin,Deng, Huan,Wang, Hui-li,Yin, Rui,Deng, Huan,Wang, Hui-li,Hallett, Paul D.,Griffiths, Bryan S.,Daniell, Tim J.. 2010

[5]Effect of arbuscular mycorrhizal fungi on aggregate stability of a clay soil inoculating with two different host plants. Xu, Ping,Liang, Lin Zhou,Dong, Xiao Ying,Shen, Ren Fang,Xu, Ping.

[6]Effects of different organic residues on rice yield and soil quality. Su Chunjiang,Wang Xiaolan,Peng Li,Wang Xiaolan,Liu Wei,Liu Wei,Li Ping,Fang Yan,Sun Lian. 2012

[7]Effects of Livestock Exclusion on Soil Physical and Biochemical Properties of a Desert Rangeland. Qin, Yan,Li, Xianglin,Qin, Yan,Qin, Yan,Niu, Decao,Kang, Jian,Zhou, Yanfei,Kang, Jian. 2015

[8]Development of soil food web of microbes and nematodes under different agricultural practices during the early stage of pedogenesis of a Mollisol. Li, Na,Pan, Feng-juan,Han, Xiao-Zeng,Zhang, Bin.

[9]Contrasting development of soil microbial community structure under no-tilled perennial and tilled cropping during early pedogenesis of a Mollisol. Li, Na,You, Meng-Yang,Qiao, Yun-Fa,Zou, Wen-Xiu,Han, Xiao-Zeng,Zhang, Bin,Yao, Shui-Hong,Zhang, Yue-Ling,Zhang, Bin.

[10]Phyllosphere bacterial communities associated with the degradation of acetamiprid in Phaseolus vulgaris. Zhou, Yu,Xu, Junfeng,Wang, Wei,Chen, Xiaoyun,Qiao, Xiongwu,Zhou, Yu,Li, Wenjun,Zhou, Yu,Li, Wenjun. 2011

[11]The host species affects the microbial community in the goat rumen. Shi, P. J.,Meng, K.,Zhou, Z. G.,Wang, Y. R.,Diao, Q. Y.,Yao, B.. 2008

[12]Soil microbial communities and enzyme activities in a reclaimed coastal soil chronosequence under rice-barley cropping. Fu, Qinglin,Liu, Chen,Ding, Nengfei,Lin, Yicheng,Guo, Bin,Luo, Jiafa,Wang, Hailong. 2012

[13]2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 6-Methoxy-benzoxazolin-2-one (MBOA) Levels in the Wheat Rhizosphere and Their Effect on the Soil Microbial Community Structure. Kong, Chui-Hua,Zhang, Song-Zhu,Zheng, Yong-Quan,Li, Jing,Liu, Xing-Gang.

[14]Impact of imazethapyr on the microbial community structure in agricultural soils. Zhang, Changpeng,Xu, Jun,Liu, Xingang,Dong, Fengshou,Kong, Zhiqiang,Sheng, Yu,Zheng, Yongquan,Zhang, Changpeng.

[15]Structural and functional response of soil microbiota to addition of plant substrate are moderated by soil Cu levels. Wakelin, Steven Alan,McLaughlin, Mike J.,Clarke, K. R.,Chu, Guixin,Broos, Kris,Wakelin, Steven Alan,Broos, Kris,Liang, Yongchao,McLaughlin, Mike J..

[16]Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Ding, Jianli,Jiang, Xin,Ma, Mingchao,Guan, Dawei,Zhou, Jing,Cao, Fengming,Li, Li,Li, Jun,Jiang, Xin,Ma, Mingchao,Cao, Fengming,Li, Jun,Zhou, Baoku,Zhao, Baisuo.

[17]Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Ai, Chao,Liang, Guoqing,Sun, Jingwen,Wang, Xiubin,Zhou, Wei.

[18]Response of the soil microbial community to imazethapyr application in a soybean field. Guo, Liqun,Dong, Fengshou,Liu, Xingang,Wu, Xiaohu,Sheng, Yu,Zhang, Ying,Zheng, Yongquan. 2013

[19]Accumulation and Distribution of Cadmium in Flue-Cured Tobacco and Its Impact on Rhizosphere Microbial Community. Gao, Lin,Shen, Guoming,Zhang, Jiguang. 2015

[20]Effect of Cd Contamination on Soil Microbial Community Structure in Flue-cured Tobacco Rhizosphere. Gao, Lin,Shen, Guo-Ming,Zhang, Ji-Guang. 2015

作者其他论文 更多>>