Molecular and biochemical characterization of a new alkaline active multidomain xylanase from alkaline wastewater sludge
文献类型: 外文期刊
第一作者: Zhao, Yanyu
作者: Zhao, Yanyu;Meng, Kun;Luo, Huiying;Huang, Huoqing;Yuan, Tiezheng;Yao, Bin;Zhao, Yanyu;Yang, Peilong
作者机构:
关键词: Alkaline wastewater sludge;Biobleaching;Direct cloning;Glycoside hydrolase (GH) family 10
期刊名称:WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY ( 影响因子:3.312; 五年影响因子:3.58 )
ISSN: 0959-3993
年卷期: 2013 年 29 卷 2 期
页码:
收录情况: SCI
摘要: A xylanase gene, xyn-b39, coding for a multidomain glycoside hydrolase (GH) family 10 protein was cloned from the genomic DNA of the alkaline wastewater sludge of a paper mill. Its deduced amino acid sequence of 1,481 residues included two carbohydrate-binding modules (CBM) of family CBM_4_9, one catalytic domain of GH 10, one family 9 CBM and three S-layer homology (SLH) domains. xyn-b39 was expressed heterologously in Escherichia coli, and the recombinant enzyme was purified and characterized. Xyn-b39 exhibited maximum activity at pH 7.0 and 60 A degrees C, and remained highly active under alkaline conditions (more than 80 % activity at pH 9.0 and 40 % activity at pH 10.0). The enzyme was thermostable at 55 A degrees C, retaining more than 90 % of the initial activity after 2 h pre-incubation. Xyn-b39 had wide substrate specificity and hydrolyzed soluble substrates (birchwood xylan, beechwood xylan, oat spelt xylan, wheat arabinoxylan) and insoluble substrates (oat spelt xylan and wheat arabinoxylan). Hydrolysis product analysis indicated that Xyn-b39 was an endo-type xylanase. The K (m) and V (max) values of Xyn-b39 for birchwood xylan were 1.01 mg/mL and 73.53 U/min/mg, respectively. At the charge of 10 U/g reed pulp for 1 h, Xyn-b39 significantly reduced the Kappa number (P < 0.05) with low consumption of chlorine dioxide alone.
分类号:
- 相关文献
作者其他论文 更多>>
-
Alleviating Clostridium perfringens-Induced Intestinal Lesions in Chickens Using the Xylanase CbXyn10C and Its Binary Cocktail with a Protease
作者:Zhang, Wenjing;Hao, Zhenzhen;Yang, Daoxin;Ji, Wangli;Guo, Kairui;Sun, Xianhua;Wang, Shuai;Yang, Shuyan;Ma, Jianshuang;Luo, Huiying;Yao, Bin;Wang, Yuan;Huang, Huoqing;Su, Xiaoyun;Wang, Tong;Zhang, Meiling
关键词:necrotic enteritis; Clostridium perfringens; xylanase; protease; broiler chickens; gut microbiota modulation
-
p-Hydroxycinnamic Acids: Advancements in Synthetic Biology, Emerging Regulatory Targets in Gut Microbiota Interactions, and Implications for Animal Health
作者:Ma, Chunlai;Liang, Ziqi;Wang, Yuan;Luo, Huiying;Yao, Bin;Tu, Tao;Ma, Chunlai;Liang, Ziqi;Yang, Xiaojun
关键词:acids; bioactivity; animal health; gut microbiota; biosynthesis
-
Fructose metabolism in Entner-Doudoroff pathway-deficient Cupriavidus necator H16 depends on the Calvin shunt
作者:Ding, Lijuan;Guo, Gang;Cui, Lin;Wang, Yuheng;Liu, Xu;Luo, Huiying;Huang, Huoqing;Su, Xiaoyun;Bai, Yingguo;Zhang, Jie;Tu, Tao;Qin, Xing;Wang, Yuan;Wang, Yaru;Yao, Bin;Wang, Xiaolu;Dronsella, Beau;Xue, Xianli
关键词:Cupriavidus necator; Entner-Doudoroff pathway; Calvin shunt; Phosphoglycolate salvage pathway
-
Metabolic Engineering of Escherichia coli for Efficient
l -Isoleucine Production based on the Citramalate Pathway作者:Zhang, Qiquan;Wang, Yuheng;Wang, Xiaolu;Bai, Yingguo;Wang, Yaru;Wang, Yuan;Tu, Tao;Qin, Xing;Su, Xiaoyun;Yao, Bin;Luo, Huiying;Liu, Xu;Huang, Huoqing;Zhang, Jie
关键词:Escherichia coli; l-isoleucine; metabolic engineering; citramalate pathway; threonine-independent pathway
-
Identification of Aspartate Aminotransferase FocAST2 as a Novel Target of Albendazole in Fusarium oxysporum f. sp. cubense TR4
作者:Liu, Yushan;Liu, Siwen;Peng, Cheng;Huang, Huoqing;Zhang, Wei;Huo, Yile;Yi, Ganjun;Li, Chunyu;Zeng, Weiqing
关键词:banana;
Foc TR4; albendazole; target; aspartate transaminase -
Genome-Wide Profiling of bZIP Transcription Factors and FocbZIP11's Impact on Fusarium TR4 Pathogenicity
作者:Xie, Yanling;Huang, Huoqing;Huo, Yile;Yang, Wenlong;Li, Yuqing;Liu, Siwen;Li, Chunyu;Xie, Yanling;Xie, Yanling;Liu, Siwen;Li, Chunyu;Liu, Siwen;Li, Chunyu
关键词:
Fusarium oxysporum f. sp.cubense tropical race 4; fungal stress adaptation; plant-pathogen interactions; virulence -
Efficient C25-Hydroxylation of Vitamin D3 Utilizing an Artificial Self-Sufficient Whole-Cell Cytochrome P450 Biocatalyst
作者:Liang, Ziqi;Zhou, Qiao;Li, Yicheng;Yang, Xiaojun;Liang, Ziqi;Zhou, Qiao;Li, Yicheng;Liu, Xiaoqing;Shen, Yiwen;Tian, Jian;Wang, Xiaolu;Qin, Xing;Wang, Yuan;Luo, Huiying;Yao, Bin;Tu, Tao
关键词:25-hydroxyvitamin D-3; P450s; self-sufficientP450s; local energetic frustration; linker engineering