Development of 1047 insertion-deletion markers for rice genetic studies and breeding

文献类型: 外文期刊

第一作者: Zeng, Y. X.

作者: Zeng, Y. X.;Wen, Z. H.;Ma, L. Y.;Ji, Z. J.;Li, X. M.;Yang, C. D.

作者机构:

关键词: Rice (Oryza sativa L.);Molecular marker;Insertion-deletion length polymorphism;InDel

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2013 年 12 卷 4 期

页码:

收录情况: SCI

摘要: In this study, a total of 1047 insertion-deletion (InDel) primer pairs distributed across the rice genome were developed and experimentally validated. The primer pairs were designed based on the InDel length polymorphisms between 93-11 (Oryza sativa ssp indica cv.) and Nipponbare (Oryza sativa ssp japonica cv.), aiming for utilization between indica and japonica rice, or between other inter-subspecific rice cultivars. The 1047 primer pairs were dispersed across all 12 of the rice chromosomes, with one InDel marker found every 371.3 kb on average. The InDel length of the markers varied from 3 to 39 bp: 88.2% of the markers contained 6 to 25 bp, only 6.2% of markers were <= 5 bp, and 5.6% were >= 26 bp. Six hundred and twenty-three (59.5%) of the 1047 InDel markers were shown to amplify well and were polymorphic between Taichung65 and IR8, and 476 (45.5%) markers were polymorphic between Lemont and Yangdao4, while 398 (38.0%) were polymorphic in both combinations. These results demonstrated that the polymerase chain reaction-based InDel markers developed in this study could be of immediate use for rice genetic studies and breeding programs.

分类号:

  • 相关文献

[1]Genetic analysis and mapping of rice (Oryza sativa L.) male-sterile (OsMS-L) mutant. Liu, HS,Chu, HW,Li, H,Wang, HM,Wei, JL,Li, N,Ding, SY,Huang, H,Ma, H,Huang, CF,Luo, D,Yuang, Z,Liu, JH,Zhang, DB. 2005

[2]Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.). Shi YongFeng,Chen Jie,Liu WenQiang,Huang QiNa,Wu JianLi,Shi YongFeng,Huang QiNa,Shen Bo. 2009

[3]Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.). Dong, YJ,Ogawa, T,Lin, DZ,Koh, HJ,Kamiunten, H,Matsuo, M,Cheng, SH. 2006

[4]Identification of Sesame Genomic Variations from Genome Comparison of Landrace and Variety. Wei, Xin,Zhu, Xiaodong,Yu, Jingyin,Wang, Linhai,Zhang, Yanxin,Li, Donghua,Zhou, Rong,Zhang, Xiurong. 2016

[5]Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. Zhang, Tifu,Lv, Yuanda,Zhou, Ling,Lu, Haiyan,Liang, Shuaiqiang,Bao, Huabin,Zhao, Han,Gu, Minfeng,Liu, Yuhe. 2017

[6]Association Mapping Reveals Genetic Loci Associated with Important Agronomic Traits in Lentinula edodes, Shiitake Mushroom. Li, Chuang,Gong, Wenbing,Zhang, Lin,Bian, Yinbing,Xiao, Yang,Gong, Wenbing,Yang, Zhiquan,Nong, Wenyan,Kwan, Hoi-Shan,Cheung, Man-Kit. 2017

[7]Development of a large number of SSR and InDel markers and construction of a high-density genetic map based on a RIL population of pepper (Capsicum annuum L.). Zhang, Xiao-fen,Wang, Qian,Zhang, Xiao-fen,Sun, Hong-he,Xu, Yong,Chen, Bin,Yu, Shuan-cang,Geng, San-sheng.

[8]Development of InDel markers for the restorer gene and Rf1 assessment of their utility for marker-assisted selection in cotton. Jianyong Wu,Xing, Chaozhu,Meng Zhang,Xuexian Zhang,Liping Guo,Tingxiang Qi,Hailin Wang,Huini Tang,Jinfa Zhang,Chaozhu Xing.

[9]Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using Insertion-Deletion (InDel) and Simple Sequence Repeat (SSR) markers. Wu, Kun,Yang, Minmin,Liu, Hongyan,Mei, Ju,Zhao, Yingzhong,Tao, Ye. 2014

[10]Genome re-sequencing of two accessions and fine mapping the locus of lobed leaflet margins in mungbean. Jiao, Keyuan,Guo, Wuxiu,Jiao, Keyuan,Li, Xin,Yuan, Xingxing,Yuan, Xingxing,Cui, Xiaoyan,Chen, Xin.

[11]Exploiting Illumina sequencing for the development of InDel markers in watermelon (Citrullus lanatus). Liu, G.,Xu, J. H.,Zhang, M.,Li, P. F.,Yao, X. F.,Hou, Q.,Zhu, L. L.,Ren, R. S.,Yang, X. P..

[12]Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos. Zhang, Xuemei,Li, Wenrong,Liu, Mingjun,Zhang, Xuemei,Li, Wenrong,Wu, Yangsheng,Peng, Xinrong,Lou, Bian,Wang, Liqin,Liu, Mingjun,Zhang, Xuemei,Li, Wenrong,Wu, Yangsheng,Peng, Xinrong,Lou, Bian,Wang, Liqin,Liu, Mingjun.

[13]Overcoming obstacles to interspecific hybridization between Gossypium hirsutum and G. turneri. Chen, Yu,Chen, Yu,Feng, Shouli,Zhao, Ting,Zhou, Baoliang. 2018

[14]Peanut (Arachis hypogaea L.) Omics and Biotechnology in China. Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Liu, Shuan-Tao. 2011

[15]Screening for the molecular marker linked to saucer gene of peach fruit shape. Guo, J,Jiang, Q,Zhang, K,Zhao, J,Yang, Y. 2002

[16]Analysis of genetic relationships of mulberry (Morus L.) germplasm using sequence-related amplified polymorphism (SRAP) markers. Zhao, Weiguo,Chung, Il-Min,Zhao, Weiguo,Fang, Rongjun,Pan, Yile,Yang, Yonghua,Chung, Jong-Wook,Park, Yong-Jin. 2009

[17]Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Yang, Zu-Jun,Li, Guang-Rong,Zeng, Zi-Xian,Zhang, Yong,Zhou, Jian-Ping,Liu, Zhao-Hui,Ren, Zheng-Long. 2008

[18]Gene Discovery in Triticum dicoccoides, the Direct Progenitor of Cultivated Wheats. Sun, D. F.,Peng, Y. L.,Nevo, E.,Peng, J. H.. 2013

[19]Establishment and Application of Ty-2 Molecular Marker in Tomatoes. Yang, Ruixing,Li, Haitao,Lv, Shuwen,Li, Haitao,Chai, Min. 2012

[20]Mapping of a wheat resistance gene to yellow mosaic disease by amplified fragment length polymorphism and simple sequence repeat markers. Nie, H,He, ZT,Chen, XL,Han, YP,Wang, JR,Li, X,Han, CG,Yu, JL. 2005

作者其他论文 更多>>