Characterization of Ethylene Receptors and Their Interactions with GmTPR-A Novel Tetratricopeptide Repeat Protein (TPR) in Soybean (Glycine max L.)

文献类型: 外文期刊

第一作者: Niu Yan-yan

作者: Niu Yan-yan;Chen Xue-ping;Niu Yan-yan;Chen Ming;Ma You-zhi

作者机构:

关键词: soybean;Arabidopsis;ethylene receptor;TPR protein

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2013 年 12 卷 4 期

页码:

收录情况: SCI

摘要: Ethylene receptors play important roles not only in regulation of growth and development but also in response to environmental stimuli of plants. However, there are few reports on ethylene receptors in soybean. In this article, putative ethylene receptors of soybean were searched from soybean genomic database (http://www.phytozome.net/search.php) and analyzed. The ethylene receptor gene family in soybean comprising eight members, designated as GmERS1-1, GmERS1-2, GmETR1-1, GmETR1-2, GmETR2-1, GmETR2-2, GmEIN4-1, and GmEIN4-2 corresponding with their homologous genes in Arabidopsis, were isolated and analyzed. Phylogenetic analysis indicated that the eight soybean ethylene receptors (SERs) were in two subfamilies and further divided into four groups, viz., groups I (GmERS1-1 and GmERS1-2), II (GmETR1-1 and GmETR1-2), VI (GmETR2-1 and GmETR2-2), and VII (GmEIN4-1 and GmEIN4-2). Protein structure of the members in groups I and II from subfamily I were more conserved than the members in other two groups from subfamily II. Expression patterns of the SERs were compared with the homologous genes in Arabidopsis. The results demonstrated that expression patterns of the SERs differed from Arabidopsis members in the same group, suggesting that SERs are involved in different signal pathways compared to ethylene receptors in Arabidopsis. Promoter analysis showed that the sequences of the members in each group were different from each other, and some specific binding elements of transcription factors detected in promoter sequences might explain the differences between the members in the same group. A novel soybean TPR protein (tetratricopeptide repeat protein), GmTPR, was identified to interact with GmETR1-1, apparently an important ethylene receptor in ethylene signaling pathway in soybean. This suggested that GmTPR might be a novel downstream component of the ethylene signaling pathway.

分类号:

  • 相关文献

[1]Cloning and expression of putative ethylene receptor genes in soybean plant. Xie Zongming,Lei Gang,Hada, Wuriyanghan,Tian Aiguo,Zhang Jinsong,Chen Shouyi.

[2]ZmFKBP20-1 improves the drought and salt tolerance of transformed Arabidopsis. Yu, Yanli,Li, Yanjiao,Zhao, Meng,Li, Wencai,Sun, Qi,Li, Wenlan,Meng, Zhaodong,Jia, Fengjuan,Jia, Fengjuan,Li, Nana. 2017

[3]Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.). Xiaohong Zhang,Jianghui wei,Shuli Fan,Meizhen Song,Chaoyou Pang,Hengling Wei,Chengshe Wang,Shuxun Yu. 2016

[4]A novel GhBEE1-Like gene of cotton causes anther indehiscence in transgenic Arabidopsis under uncontrolled transcription level. Eryong Chen;Xiaoqian Wang,Zhang, Xueyan,Qian Gong,Hamama Islam Butt,Yanli Chen,Chaojun Zhang,Zuoren Yang,Zhixia Wu,Xiaoyang Ge,Xianlong Zhang,Fuguang Li,Xueyan Zhang.

[5]Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Jing, Hongwei,Yang, Xiaolu,Zhang, Jian,Zheng, Huakun,Nian, Jinqiang,Feng, Jian,Li, Jiayang,Zuo, Jianru,Jing, Hongwei,Yang, Xiaolu,Zhang, Jian,Zheng, Huakun,Nian, Jinqiang,Feng, Jian,Li, Jiayang,Zuo, Jianru,Jing, Hongwei,Yang, Xiaolu,Zheng, Huakun,Liu, Xuehui,Dong, Guojun,Qian, Qian,Xia, Bin.

[6]Expression of tomato SlTIP2;2 enhances the tolerance to salt stress in the transgenic Arabidopsis and interacts with target proteins. Xin, Shichao,Yu, Guohong,Qiang, Xiaojing,Xu, Na,Cheng, Xianguo,Sun, Linlin.

[7]Phenolics from Ageratina adenophora Roots and Their Phytotoxic Effects on Arabidopsis thaliana Seed Germination and Seedling Growth. Ren, Hui,Wang, Jing,Xu, Qiao-Lin,Xie, Hai-Hui,Tan, Jian-Wen,Liu, Wan-Xue,Wan, Fang-Hao,Pei, Gang,Ren, Hui,Wang, Jing,Xu, Qiao-Lin.

[8]Genetic discovery for oil production and quality in sesame. Zhang, Yanxin,Wang, Linhai,Li, Donghua,Zhu, Xiaodong,Zhu, Xiaofeng,Gao, Yuan,Zhang, Xiurong,Liu, Kunyan,Feng, Qi,Zhao, Yan,Zhao, Qiang,Li, Wenjun,Fan, Danlin,Lu, Yiqi,Zhou, Congcong,Zhu, Chuanrang,Tian, Qilin,Wen, Ziruo,Weng, Qijun,Han, Bin,Huang, Xuehui,Zhang, Xianmei,Liu, Lifeng,Tang, Xiumei,Zhong, Ruichun.

[9]Microarray analysis of differentially expressed gene responses to bisphenol A in Arabidopsis. Tian, Yong-Sheng,Jin, Xiao-Fen,Fu, Xiao-Yan,Zhao, Wei,Han, Hong-Juan,Zhu, Bo,Yao, Quan-Hong,Tian, Yong-Sheng,Man-Liu.

[10]Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. Zhang, Yang,Chen, Chen,Jin, Xiao-Fen,Xiong, Ai-Sheng,Peng, Ri-He,Yao, Quan-Hong,Zhang, Yang,Chen, Chen,Hong, Yi-Huan,Chen, Jian-Min.

[11]Stress responses to trichlorophenol in Arabidopsis and integrative analysis of alteration in transcriptional profiling from microarray. Li, Zhenjun,Zhu, Bo,Wang, Bo,Gao, Jianjie,Fu, Xiaoyan,Yao, Quanhong.

[12]An analysis of homoeologous microsatellites from Triticum urartu and Triticum monococcum. Bai, JR,Liu, KF,Jia, X,Wang, DW.

[13]Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Cui, Xia,Lu, Falong,Xue, Yongming,Kang, Yanyuan,Zhang, Shuaibin,Qiu, Qi,Cui, Xiekui,Zheng, Shuzhi,Cao, Xiaofeng,Li, Yue,Xu, Xiaodong,Xue, Yongming,Kang, Yanyuan,Zhang, Shuaibin,Qiu, Qi,Cui, Xiekui,Liu, Bin.

[14]Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and Arabidopsis. Zhang, Li-Ying,Bai, Ming-Yi,Zhu, Jia-Ying,Wang, Hao,Wang, Wenfei,Zhao, Jun,Yang, Hongjuan,Xu, Yunyuan,Lin, Wen-Hui,Chong, Kang,Wang, Zhi-Yong,Zhang, Li-Ying,Zhu, Jia-Ying,Wang, Hao,Wang, Wenfei,Zhao, Jun,Bai, Ming-Yi,Sun, Yu,Wang, Zhi-Yong,Wu, Jinxia,Zhang, Zhiguo,Sun, Xuehui,Lu, Tiegang,Kim, Soo-Hwan,Fujioka, Shozo.

[15]Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton. Gao, Peng,Zhao, Pi-Ming,Wang, Juan,Wang, Hai-Yun,Wang, Gui-Ling,Xia, Gui-Xian,Gao, Peng,Zhao, Pi-Ming,Wang, Juan,Wang, Hai-Yun,Wang, Gui-Ling,Xia, Gui-Xian,Du, Xiong-Ming.

[16]Isolation and characterization of a cDNA encoding a papain-like cysteine protease from alfalfa. Yan, Longfeng,Han, Jianguo,Sun, Yan,Yan, Longfeng,Yang, Qingchuan,Kang, Junmei,Liu, Zhipeng,Wu, Mingsheng.

[17]DGE-seq analysis of MUR3-related Arabidopsis mutants provides insight into how dysfunctional xyloglucan affects cell elongation. Xu, Zongchang,Wang, Meng,Shi, Dachuan,Niu, Tiantian,Kong, Yingzhen,Xu, Zongchang,Wang, Meng,Zhou, Gongke,Hahn, Michael G.,O'Neill, Malcolm A.,Hahn, Michael G..

[18]Mutation of the rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Qi, Jing,Bu, Qingyun,Li, Shuyu,Chen, Qian,Sun, Jiaqiang,Liang, Wenxing,Zhou, Yihua,Chu, Chengcai,Chen, Jinfeng,Chen, Mingsheng,Li, Chuanyou,Qian, Qian,Qi, Jing,Li, Shuyu,Chen, Qian,Liang, Wenxing,Li, Xugang,Ren, Fugang,Palme, Klaus,Li, Xugang,Ren, Fugang,Palme, Klaus,Zhao, Bingran.

[19]Arabidopsis cytosolic glutamine synthetase AtGLN1;1 is a potential substrate of AtCRK3 involved in leaf senescence. Li, RJ,Hua, W,Lu, YT.

[20]Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation. Li, Chen,Wang, Xuanbin,Li, Chen,Zheng, Lanlan,Zhang, Jingxuan,Lv, Yanxia,Zhang, Yonghong,Liu, Jianping,Palfalvi, Gergo,Wang, Guodong.

作者其他论文 更多>>