Influence of High Temperature Stress on Net Photosynthesis, Dry Matter Partitioning and Rice Grain Yield at Flowering and Grain Filling Stages

文献类型: 外文期刊

第一作者: Lu Guo-hua

作者: Lu Guo-hua;Wu Yong-feng;Bai Wen-bo;Ma Bao;Wang Chun-yan;Song Ji-qing

作者机构:

关键词: dry matter partitioning;grain yield;high temperature stress;rice growth

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2013 年 12 卷 4 期

页码:

收录情况: SCI

摘要: Climate change is recognized to increase the frequency and severity of extreme temperature events. At flowering and grain filling stages, risk of high temperature stress (HTS) on rice might increase, and lead to declining grain yields. A regulated cabinet experiment was carried out to investigate effects of high temperature stress on rice growth at flowering and grain-filling stages. Results showed that no obvious decrease pattern in net photosynthesis appeared along with the temperature rising, but the dry matter allocation in leaf, leaf sheath, culm, and panicle all changed. Dry weight of panicle decreased, and ratio of straw to total above ground crop dry weight increased 6-34% from CK, which might have great effects on carbon cycling and green house gas emission. Grain yield decreased significantly across all treatments on average from 15 to 73%. Occurrence of HTS at flowering stage showed more serious influence on grain yield than at grain filling stage. High temperature stress showed negative effects on harvest index. It might be helpful to provide valuable information for crop simulation models to capture the effects of high temperature stress on rice, and evaluate the high temperature risk.

分类号:

  • 相关文献

[1]CONSEQUENCES OF VARIED PLANTING GEOMETRY AND EARLY POST EMERGENCE HERBICIDES FOR CROP-WEED INTERVENTIONS IN RICE UNDER SEMI-ARID CLIMATE. Ashraf, U.,Mo, Z. W.,Tang, X. R.,Ashraf, U.,Mo, Z. W.,Tang, X. R.,Abbas, R. N.,Anjum, S. A.,Khan, I.,Hussain, S.. 2016

[2]Root application of selenite can simultaneously reduce arsenic and cadmium accumulation and maintain grain yields, but show negative effects on the grain quality of paddy rice. Liao, Guojian,Wu, Qianhua,Feng, Renwei,Guo, Junkang,Wang, Ruigang,Ding, Yongzhen,Sun, Yang,Xu, Yingming,Xia, Wei,Feng, Renwei,Guo, Junkang,Wang, Ruigang,Sun, Yang,Xu, Yingming,Liao, Guojian,Wu, Qianhua,Feng, Renwei,Fan, Zhilian,Mo, Liangyu,Chen, Cheng,Xu, Yi.

[3]Simulation of dry matter partitioning and flower marketing date of greenhouse phalaenopsis. Zhang, Xiaoyan,Liu, Feng,Wang, Fengyun,Yang, Yujian,Feng, Wenjie,Zhu, Jianhua. 2007

[4]Density responses and spatial distribution of cotton yield and yield components in jujube (Zizyphus jujube)/cotton (Gossypium hirsutum) agroforestry. Qi Wang,Shuo Han,Lizhen Zhang,Dongsheng Zhang,Wopke van der Werf,Jochem B. Evers,Hongquan Sun,Zhicheng Su,Siping Zhang.

[5]Simulation of Processing Tomato Dry Matter Accumulation, Partitioning and Yield Prediction. Wang Jichuan,Yu Jun,Gao Shan,Yuan Jie,Ma Fuyu,Ma Fuyu,Chen Yuanliang,He Wei. 2010

[6]Changes in the protective mechanism of photosystem II and molecular regulation in response to high temperature stress in grapevines. Zha, Qian,Xi, Xiaojun,Jiang, Aili,Tian, Yihua,Zha, Qian,Wang, Shiping.

[7]Effect of the dietary probiotic Clostridium butyricum on growth, intestine antioxidant capacity and resistance to high temperature stress in kuruma shrimp Marsupenaeus japonicus. Duan, Yafei,Zhang, Yue,Dong, Hongbiao,Wang, Yun,Zhang, Jiasong.

[8]Prediction model of rice (Oryza sativa) yield under high temperature stress based on hyper-spectral remote sensing. Xie, X. J.,Shen, Sh H.,Li, Y. X.,Li, B. B..

[9]Changes of transcriptome and proteome are associated with the enhanced post-anthesis high temperature tolerance induced by pre-anthesis heat priming in wheat. Xin, Caiyun,Wang, Xiao,Cai, Jian,Zhou, Qin,Dai, Tingbo,Cao, Weixing,Jiang, Dong,Liu, Fulai,Xin, Caiyun.

[10]Comparative transcriptome profiling of Pyropia yezoensis (Ueda) MS Hwang & HG Choi in response to temperature stresses. Sun, Peipei,Mao, Yunxiang,Cao, Min,Kong, Fanna,Bi, Guiqi,Li, Guiyang,Wang, Li. 2015

[11]Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Xue, Y.,Peng, R.,Xiong, A.,Li, X.,Yao, Q.,Zha, D.. 2010

[12]Multiple generation effects of high temperature on the development and fecundity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Cong, Lin,Wan, Fang-Hao. 2013

[13]Effects of emodin and vitamin C on growth performance, biochemical parameters and two HSP70s mRNA expression of Wuchang bream (Megalobrama amblycephala Yih) under high temperature stress. Ming, Jianhua,Xie, Jun,Xu, Pao,Ge, Xianping,Ming, Jianhua,Ye, Jinyun,Ming, Jianhua,Liu, Wenbin. 2012

[14]Shade Ameliorates High Temperature-induced Inhibition of Growth in Herbaceous Peony (Paeonia lactiflora). Zhao, Daqiu,Han, Chengxia,Zhou, Chunhua,Tao, Jun,Zhao, Daqiu. 2015

[15]Biochemical and molecular responses of herbaceous peony to high temperature stress. Wu, Yan-Qing,Zhao, Da-Qiu,Han, Chen-Xia,Tao, Jun,Zhao, Da-Qiu,Tao, Jun. 2016

[16]Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana. Zhu, Bo,Xu, Jing,Zhou, Jun,Xu, Jin-Tao,Hou, Xi-Lin,Zhu, Bo,Xiong, Ai-Sheng,Peng, Ri-He,Xu, Jing,Zhou, Jun,Xu, Jin-Tao,Jin, Xiao-Fen,Zhang, Yang,Yao, Quan-Hong,Jin, Xiao-Fen,Zhang, Yang.

[17]Effect of dietary astaxanthin on the growth performance, non-specific immunity, and antioxidant capacity of pufferfish (Takifugu obscurus) under high temperature stress. Cheng, Chang-Hong,Guo, Zhi-Xun,Cheng, Chang-Hong,Guo, Zhi-Xun,Ye, Chao-Xia,Wang, An-Li,Ye, Chao-Xia,Wang, An-Li. 2018

[18]Response of vacuolar processing enzyme in Malus hupehensis and MhVPE gamma-overexpressing Arabidopsis to high temperature stress. Su, Qian,Men, Xiu-Jin,Zhang, Wei-Wei,Fan, Shu-Lei,Yan, Li-Juan,Yang, Hong-Qiang,Ran, Kun.

[19]Morphological and yield responses of winter wheat (Triticum aestivum L.) to raised bed planting in Northern China. Wang, Fahong,Kong, Ling'an,Li, Shengdong,Si, Jisheng,Feng, Bo,Zhang, Bin,Wang, Fahong,Sayre, Ken. 2011

[20]Nitrogen Use Efficiency as Affected by Phosphorus and Potassium in Long-Term Rice and Wheat Experiments. He Xin-hua,Shi Xiao-jun,Li Shuang-lai,Sun Xi-fa,He Xin-hua. 2014

作者其他论文 更多>>