Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Wang, Huan

作者: Wang, Huan;Shi, Decheng;Liu, Bao;Yang, Chunwu;Zhang, Meishan;Guo, Rui;Lin, Xiuyun

作者机构:

关键词: Salt stress;Rice;Nitrogen metabolism;Gene expression;Old and young leaves

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2012 年 12 卷

页码:

收录情况: SCI

摘要: Background: It is well known that salt stress has different effects on old and young tissues. However, it remains largely unexplored whether old and young tissues have different regulatory mechanism during adaptation of plants to salt stress. The aim of this study was to investigate whether salt stress has different effects on the ion balance and nitrogen metabolism in the old and young leaves of rice, and to compare functions of both organs in rice salt tolerance. Results: Rice protected young leaves from ion harm via the large accumulation of Na+ and Cl- in old leaves. The up-regulation of OsHKT1;1, OsHAK10 and OsHAK16 might contribute to accumulation of Na+ in old leaves under salt stress. In addition, lower expression of OsHKT1;5 and OsSOS1 in old leaves may decrease frequency of retrieving Na+ from old leaf cells. Under salt stress, old leaves showed higher concentration of NO3- content than young leaves. Up-regulation of OsNRT1;2, a gene coding nitrate transporter, might contribute to the accumulation of NO3- in the old leaves of salt stressed-rice. Salt stress clearly up-regulated the expression of OsGDH2 and OsGDH3 in old leaves, while strongly down-regulated expression of OsGS2 and OsFd-GOGAT in old leaves. Conclusions: The down-regulation of OsGS2 and OsFd-GOGAT in old leaves might be a harmful response to excesses of Na+ and Cl-. Under salt stress, rice might accumulate Na+ and Cl- to toxic levels in old leaves. This might influence photorespiration process, reduce NH4+ production from photorespiration, and immediately down-regulate the expression of OsGS2 and OsFd-GOGAT in old leaves of salt stressed rice. Excesses of Na+ and Cl- also might change the pathway of NH4+ assimilation in old leaves of salt stressed rice plants, weaken GOGAT/GS pathway and elevate GDH pathway.

分类号:

  • 相关文献

[1]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[2]Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Chen, G.,Fan, P. S.,Feng, W. M.,Guan, A. Q.,Lu, Y. Y.,Wan, Y. L..

[3]Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress. Xu, Jianwen,Huang, Xi,Lan, Hongxia,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen.

[4]Effects of root restriction on nitrogen and gene expression levels in nitrogen metabolism in Jumeigui grapevines (Vitis vinifera L.xVitis labrusca L). Li Jie-fa,Wang Bo,Wang Lei,Zhang Cai-xi,Xu Wen-ping,Wang Shi-ping,Zhu Li-na,Bai Yang. 2015

[5]Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). Zhang, C. H.,Zhang, B. B.,Yu, M. L.,Ma, R. J.,Song, Z. Z.,Korir, N. K..

[6]Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari. Yang, Bo,Ma, Hai-Yan,Wang, Xiao-Mi,Jia, Yong,Hu, Jing,Dai, Chuan-Chao,Li, Xia.

[7]Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Kong, Xiangqiang,Wang, Tao,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Dong, Hezhong,Wang, Tao,Dong, Hezhong.

[8]Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress. Long, Ruicai,Zhang, Tiejun,Kang, Junmei,Cong, Lili,Gao, Yanli,Yang, Qingchuan,Li, Mingna,Sun, Yan,Liu, Fengqi. 2016

[9]Relationship between the Degree of Polymerization of Chitooligomers and Their Activity Affecting the Growth of Wheat Seedlings under Salt Stress. Zhang, Xiaoqian,Li, Kecheng,Liu, Song,Xing, Ronge,Yu, Huahua,Chen, Xiaolin,Qin, Yukun,Li, Pengcheng,Zhang, Xiaoqian,Li, Kecheng,Zou, Ping.

[10]ECTOPIC EXPRESSION OF SUBUNIT A OF VACUOLAR H+-ATPASE FROM APPLE ENHANCES SALT TOLERANCE IN TOBACCO PLANTS. Dong, Q. L.,Liu, D. D.,Wang, Q. J.,Fang, M. J.,Hao, Y. J.,Yao, Y. X.,Dong, Q. L.,Liu, D. D..

[11]Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1. Sun, Yan,Sun, Yan,Bai, Yongqin,Yang, Qingchuan,Kang, Junmei,Chao, Yuehui,Gruber, Margaret.

[12]Effect of Sulfated Chitooligosaccharides on Wheat Seedlings (Triticum aestivum L.) under Salt Stress. Zou, Ping,Li, Kecheng,Liu, Song,He, Xiaofei,Zhang, Xiaoqian,Xing, Ronge,Li, Pengcheng,Zou, Ping.

[13]Chalcone synthase EaCHS1 from Eupatorium adenophorum functions in salt stress tolerance in tobacco. Chen Lijuan,Guo Huiming,Cheng Hongmei,Chen Lijuan,Lin Yi.

[14]Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Hussain, Sajid,Zhang Jun-hua,Zhong Chu,Zhu Lian-feng,Cao Xiao-chuang,Yu Sheng-miao,James, Allen Bohr,Hu Ji-jie,Jin Qian-yu. 2017

[15]INTERACTIVE EFFECTS OF SALINITY AND PROLINE ON RICE AT THE ULTRASTRUCTURAL LEVEL. Sha, Han-Jing,Hu, Wen-Cheng,Jia, Yan,Liu, Hua-Long,Wang, Jing-Guo,Zou, De-Tang,Zhao, Hong-Wei,Chang, Hui-Lin. 2017

[16]Suppression of OsVPE3 Enhances Salt Tolerance by Attenuating Vacuole Rupture during Programmed Cell Death and Affects Stomata Development in Rice. Lu, Wenyun,Guo, Fu,Wang, Mingqiang,Zeng, Zhanghui,Han, Ning,Yang, Yinong,Zhu, Muyuan,Bian, Hongwu,Deng, Minjuan,Yang, Yinong,Yang, Yinong. 2016

[17]Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Chen, Yixing,Zhou, Xiaojin,Chang, Shu,Chu, Zhilin,Wang, Hanmeng,Han, Shengcheng,Wang, Yingdian,Zhou, Xiaojin.

[18]Identification of QTLs associated with salt or alkaline tolerance at the seedling stage in rice under salt or alkaline stress. Liang, Jing-long,Zhao, Zheng-wu,Zhang, Tao,Liang, Jing-long,Qu, Ying-ping,Ma, Xiao-ding,Cao, Gui-lan,Han, Long-zhi,Yang, Chun-gang,Zhang, San-yuan.

[19]Natural variation reveals that OsSAP16 controls low-temperature germination in rice. Wang, Xiang,Zou, Baohong,Shao, Qiaolin,Cui, Yongmei,Lu, Shan,Zhang, Yan,Huang, Ji,Hua, Jian,Huang, Quansheng,Hua, Jian. 2018

[20]Map-based cloning and functional analysis of the chromogen gene C in rice (Oryza sativa L.). Zhao, Shasha,Wang, Cuihong,Ma, Jian,Wang, Shuai,Tian, Peng,Wang, Jiulin,Cheng, Zhijun,Zhang, Xin,Guo, Xiuping,Lei, Cailin. 2016

作者其他论文 更多>>