Genetic relationship between grain chalkiness, protein content, and paste viscosity properties in a backcross inbred population of rice

文献类型: 外文期刊

第一作者: Zheng, Leina

作者: Zheng, Leina;Zhang, Wenwei;Liu, Shijia;Chen, Liangming;Liu, Xi;Chen, Xingang;Ma, Jing;Chen, Weiwei;Zhao, Zhigang;Jiang, Ling;Wan, Jianmin;Wan, Jianmin

作者机构:

关键词: Rice (Oryza sativa L.);Protein content;RVA profile;Chalkiness

期刊名称:JOURNAL OF CEREAL SCIENCE ( 影响因子:3.616; 五年影响因子:3.891 )

ISSN: 0733-5210

年卷期: 2012 年 56 卷 2 期

页码:

收录情况: SCI

摘要: A backcross inbred line population derived from a cross between Koshihikari and Kasalath was used to dissect the genetic relationship among chalkiness, protein content, and paste viscosity properties in rice in three environments. A total of 11 traits (or parameters) were analyzed, including percentage of grains with chalkiness (PGWC), protein content (PC) and protein index (PI), and eight parameters from the viscosity profile. PGWC, PC and PI were significantly correlated with the paste viscosity parameters. We identified 39 QTLs in three environments; ten QTL clusters emerged. Eight QTLs were consistently detected across the three environments and further confirmed using a set of chromosome segment substitution lines (CSSLs) where Kasalath was used as the donor parent and Koshihikari as the recurrent parent. One and two major clusters on chromosome 6 corresponded to the Wx and Alk loci, respectively. The former was responsible for PGWC and most of the viscosity parameters, and the latter for PI and some viscosity parameters. Particularly, QTL qPI-6.1 was linked with both the Wx and Alk loci. The co-locations of QTLs for PGWC and viscosity parameters and the linkage of qPI-6.1 and qBDV-6 at the Wx locus could be largely responsible for the phenotypic correlations between these traits. (c) 2012 Elsevier Ltd. All rights reserved.

分类号:

  • 相关文献

[1]Identification of two stably expressed QTLs for fat content in rice (Oryza sativa). Shen, Yingyue,Zhang, Wenwei,Liu, Xi,Chen, Liangming,Liu, Shijia,Zheng, Leina,Li, Jingjing,Chen, Yilin,Wu, Tao,Yu, Yang,Zhong, Zhengzheng,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

[2]Determination of Amylose Content and Its Relationship with RVA Profile Within Genetically Similar Cultivars of Rice (Oryza sativa L. ssp japonica). Wang Xin-qi,Yin Lin-qing,Shen Ge-zhi,Xu Li,Liu Qiao-quan. 2010

[3]Pasting properties, grain-filling characteristics and allelic variation linked to the grain quality in diverse rice. Chen, Likai,Yan, Xianchen,Wang, Liping,Gao, Weiwei,Yang, Jing,Chen, Siping,Wang, Hui,Chen, Zhiqiang,Guo, Tao,Zhou, Jiyong,Guo, Zhenhua.

[4]High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes. Shi, Wanju,Solis, Celymar,Xie, Fangming,Jagadish, S. V. Krishna,Shi, Wanju,Yin, Xinyou,Struik, Paul C.,Schmidt, Ralf C.,Huang, Min,Zou, Yingbin,Ye, Changrong,Jagadish, S. V. Krishna. 2017

[5]QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9. Gao, Yang,Liu, Chaolei,Li, Yuanyuan,Zhang, Anpeng,Dong, Guojun,Xie, Lihong,Zhang, Bin,Ruan, Banpu,Hong, Kai,Zeng, Dali,Guo, Longbiao,Qian, Qian,Gao, Zhenyu,Gao, Yang,Xue, Dawei. 2016

[6]Breeding of a target genotype variety based on identified chalkiness marker-QTL associations in rice (Oryza sativa L.). Liu, X.,Du, Y. R.,Li, X. H.,Yang, W. Q.,Liu, X.,Wang, Y.,Liu, X.,Li, X. L.. 2015

[7]New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-Wide and Gene-Based Association Analyses. Wang, Xiaoqian,Pang, Yunlong,Wang, Chunchao,Shen, Congcong,Xu, Jianlong,Li, Zhikang,Chen, Kai,Zhu, Yajun,Xu, Jianlong,Ali, Jauhar,Xu, Jianlong,Li, Zhikang. 2017

[8]MONITORING WINTER WHEAT MATURITY BY HYPERSPECTRAL VEGETATION INDICES. Wang, Qian,Huang, Yuanfang,Wang, Qian,Li, Cunjun,Wang, Jihua,Song, Xiaoyu,Huang, Wenjiang. 2012

[9]The PLS calibration model optimization and determination of rice protein content by near-infrared reflectance spectroscopy. Li, JX,Min, SG,Zhang, HL,Yan, YL,Luo, CB,Li, ZC. 2006

[10]Suitability of Chinese wheat cultivars for production of northern style Chinese steamed bread. He, ZH,Liu, AH,Pena, RJ,Rajaram, S. 2003

[11]Visualization of Protein in Peanut Using Hyperspectral Image with Chemometrics. Liu Hong-zhi. 2017

[12]Genotypic and environmental variation in barley beta-amylase activity and its relation to protein content. Wang, JM,Zhang, GP,Chen, JX,Shen, Q,Wu, FB. 2003

[13]The Relationship Between Chinese Raw Dumpling Quality and Flour Characteristics of Shandong Winter Wheat Cultivars. Zhang Yan,Ye Yi-li,Xiao Yong-gui,He Zhong-hu,Zhang Yan,Sun Qi-xin,Liu Jian-jun,He Zhong-hu. 2011

[14]Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles. He, Zhonghu,Ma, Dongyun,Morris, Craig F..

[15]Thermo-oxidative Degradation of Natural Rubber Coagulated by Microorganisms. Li, Si-Dong,Zhong, Jie-Ping,Yang, Lei,Liao, Shuang-Quan,She, Xiao-Dong,He, Can-Zhong. 2010

[16]QTL mapping of protein content in rice using single chromosome segment substitution lines. Wan, Jianmin,Ye, Guoyou,Liang, Shanshan,Wan, Jianmin.

[17]Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. Zhang, Pingping,He, Zhonghu,Chen, Dongsheng,Zhang, Yong,Larroque, Oscar R.,Xia, Xianchun.

[18]Analyzing relationship between genetic, geographical factors and protein content of winter wheat at different regional scales. Dong, Yingying,Wang, Jihua,Li, Cunjun,Luo, Juhua,Wang, Huifang,Wang, Qian,Huang, Wenjiang. 2011

[19]Dynamic QTL Analysis of Rice Protein Content and Protein Index Using Recombinant Inbred Lines. Zheng, Leina,Zhang, Wenwei,Chen, Xingang,Ma, Jing,Chen, Weiwei,Zhao, Zhigang,Wan, Jianmin,Zhai, Huqu,Wan, Jianmin.

[20]Fast and nondestructive determination of protein content in rapeseeds (Brassica napus L.) using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). Lu, Yuzhen,Du, Changwen,Zhou, Jianmin,Yu, Changbing.

作者其他论文 更多>>