The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway

文献类型: 外文期刊

第一作者: Tong, Xiaohong

作者: Tong, Xiaohong;Qi, Jinfeng;Mao, Bizeng;Wang, Baohui;Zhou, Guoxin;Lou, Yonggen;He, Zuhua;Tong, Xiaohong;Zeng, Longjun;Li, Qun;He, Zuhua;Tong, Xiaohong;Zeng, Longjun;Li, Qun;He, Zuhua;Zhu, Xudong;Xu, Xiaojing

作者机构:

关键词: Oryza sativa L;oxylipin pathway;jasmonates;green leaf volatiles;hydroperoxide lyase;herbivore-induced plant defense

期刊名称:PLANT JOURNAL ( 影响因子:6.417; 五年影响因子:7.627 )

ISSN: 0960-7412

年卷期: 2012 年 71 卷 5 期

页码:

收录情况: SCI

摘要: As important signal molecules, jasmonates (JAs) and green leaf volatiles (GLVs) play diverse roles in plant defense responses against insect pests and pathogens. However, how plants employ their specific defense responses by modulating the levels of JA and GLVs remains unclear. Here, we describe identification of a role for the rice HPL3 gene, which encodes a hydroperoxide lyase (HPL), OsHPL3/CYP74B2, in mediating plant-specific defense responses. The loss-of-function mutant hpl3-1 produced disease-resembling lesions spreading through the whole leaves. A biochemical assay revealed that OsHPL3 possesses intrinsic HPL activity, hydrolyzing hydroperoxylinolenic acid to produce GLVs. The hpl3-1 plants exhibited enhanced induction of JA, trypsin proteinase inhibitors and other volatiles, but decreased levels of GLVs including (Z)-3-hexen-1-ol. OsHPL3 positively modulates resistance to the rice brown planthopper [BPH, Nilaparvata lugens (Stal)] but negatively modulates resistance to the rice striped stem borer [SSB, Chilo suppressalis (Walker)]. Moreover, hpl3-1 plants were more attractive to a BPH egg parasitoid, Anagrus nilaparvatae, than the wild-type, most likely as a result of increased release of BPH-induced volatiles. Interestingly, hpl3-1 plants also showed increased resistance to bacterial blight (Xanthomonas oryzae pv. oryzae). Collectively, these results indicate that OsHPL3, by affecting the levels of JA, GLVs and other volatiles, modulates rice-specific defense responses against different invaders.

分类号:

  • 相关文献

[1]Induction of annexin by heavy metals and jasmonic acid in Zea mays. Zhou, Mei-Liang,Yang, Xiong-Bang,Zhang, Qian,Zhou, Ming,Shao, Ji-Rong,Zhou, Mei-Liang,Zhao, En-Ze,Tang, Yi-Xiong,Wu, Yan-Min,Zhu, Xue-Mei.

[2]Cloning and Molecular Characterization of HbCOI1 from Hevea brasiliensis. Peng, Shi-Qing,Xu, Jing,Li, Hui-Liang,Tian, Wei-Min. 2009

[3]Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Zhou, Meiliang,Sun, Zhanmin,Gao, Lihua,Tang, Yixiong,Wu, Yanmin,Wei, Li,Meng, Yu.

[4]Variation in the glucosinolate content of vegetative tissues of Chinese lines of Brassica napus L. Li, YC,Kiddle, G,Bennett, R,Doughty, K,Wallsgrove, R. 1999

[5]Mechanical wounding-induced laticifer differentiation in rubber tree: An indicative role of dehydration, hydrogen peroxide, and jasmonates. Tian, Wei-Min,Yang, Shu-Guang,Shi, Min-Jing,Zhang, Shi-Xin,Wu, Ji-Lin.

[6]Electroantennogram responses of the tea slug moth, Iragoides fasciata to some plant volatiles associated with tea, Camellia sinensis. Huang, An-Ping,Huang, An-Ping,Bao, Xiao-Cun,Wang, Yuan-Jiang,Zhou, Ling-Yun,Ning, Jing,Liu, Ben-Ying. 2012

[7]3,3-Dimethyl-1-butanol, a parakairomone component to Aleurodicus dispersus (Hemiptera: Aleyrodidae). Zheng, Li-Xia,Wu, Wei-Jian,Liang, Guang-Wen,Fu, Yue-Guan. 2013

[8]A Tea Hydroperoxide Lyase Gene, CsiHPL1, Regulates Tomato Defense Response Against Prodenia Litura (Fabricius) and Alternaria Alternata f. sp Lycopersici by Modulating Green Leaf Volatiles (GLVs) Release and Jasmonic Acid (JA) Gene Expression. Xin, Zhaojun,Zhang, Zhengqun,Chen, Zongmao,Sun, Xiaoling,Zhang, Liping.

[9]Behavioral responses for evaluating the attractiveness of specific tea shoot volatiles to the tea green leafhopper, Empoaca vitis. Mu, Dan,Cui, Lin,Ge, Jian,Wang, Meng-Xin,Liu, Li-Fang,Yu, Xiao-Ping,Han, Bao-Yu,Mu, Dan,Liu, Li-Fang,Zhang, Qing-He. 2012

[10]Salicylhydroxamic acid (SHAM) negatively mediates tea herbivore-induced direct and indirect defense against the tea geometrid Ectropis obliqua. Xin, Zhaojun,Zhang, Zhengqun,Chen, Zongmao,Sun, Xiaoling,Xin, Zhaojun,Chen, Zongmao,Sun, Xiaoling.

[11]IDENTIFICATION OF A SET OF RFLP PROBES FOR SUBSPECIES DIFFERENTIATION IN ORYZA-SATIVA L. QIAN, HR,ZHUANG, JY,LIN, HX,LU, J,ZHENG, KL. 1995

[12]Genome-Wide Disruption of Gene Expression in Allopolyploids but Not Hybrids of Rice Subspecies. Xu, Chunming,Bai, Yan,Zhao, Na,Hu, Lanjuan,Liu, Bao,Xu, Chunming,Wendel, Jonathan F.,Lin, Xiuyun,Zhao, Na,Gong, Zhiyun. 2014

[13]QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Mei, HW,Xu, JL,Li, ZK,Yu, XQ,Guo, LB,Wang, YP,Ying, CS,Luo, LJ. 2006

[14]YGL138(t), encoding a putative signal recognition particle 54 kDa protein, is involved in chloroplast development of rice. Zhang, Fantao,Luo, Xiangdong,Xie, Jiankun,Hu, Biaolin,Wan, Yong. 2013

[15]Loss-of-function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice. Fan, Xiaolei,Wu, Jiemin,Chen, Taiyu,Chen, Hao,Zhou, Fei,Lin, Yongjun,Fan, Xiaolei,Wu, Jiemin,Chen, Taiyu,Chen, Hao,Zhou, Fei,Lin, Yongjun,Tie, Weiwei. 2015

[16]Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding programme. He, Y. X.,Zheng, T. Q.,Wang, L. F.,Gao, Y. M.,Zhai, H. Q.,Xu, J. L.,Zhu, L. H.,Li, Z. K.,He, Y. X.,Xu, Z. J.,He, Y. X.,Hao, X. B.,Hua, Z. T.,Li, Z. K.. 2010

[17]LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Xiong, Guo Sheng,Hu, Xing Ming,Jiao, Yong Qing,Yu, Yan Chun,Chu, Cheng Cai,Li, Jia Yang,Qian, Qian,Wang, Yong Hong. 2006

[18]Identifying different types of dedifferentiated microspores from indica-japonica F-1 hybrids with subspecies-differentiating RFLP probes in rice. Xie, JH,Lu, J,Zhuang, JY,Lin, HX,Qian, HR,Gao, MW,Zheng, KL. 1997

[19]Mutation of the RDR1 gene caused genome-wide changes in gene expression, regional variation in small RNA clusters and localized alteration in DNA methylation in rice. Wang, Ningning,Zhang, Di,Wang, Zhenhui,Xun, Hongwei,Wang, Hui,Huang, Wei,Liu, Ying,Li, Ning,Ou, Xiufang,Zhang, Chunyu,Liu, Bao,Wang, Ningning,Ma, Jian,Lin, Xiuyun,Zhang, Chunyu,Wang, Ningning,Wang, Ming-Bo. 2014

[20]Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. Wang, Wen-Sheng,Zhao, Xiu-Qin,Li, Min,Huang, Li-Yu,Xu, Jian-Long,Zhang, Fan,Cui, Yan-Ru,Fu, Bin-Ying,Li, Zhi-Kang,Li, Min,Xu, Jian-Long,Fu, Bin-Ying,Li, Zhi-Kang.

作者其他论文 更多>>