EMSAM: enhanced multi-scale segment anything model for leaf disease segmentation

文献类型: 外文期刊

第一作者: Li, Junlong

作者: Li, Junlong;Feng, Quan;Yang, Sen;Zhang, Jianhua;Zhang, Jianhua

作者机构:

关键词: segment anything model; parameter efficient fine-tuning; adapter tuning; leaf disease segmentation; multi-task learning

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:4.8; 五年影响因子:5.7 )

ISSN: 1664-462X

年卷期: 2025 年 16 卷

页码:

收录情况: SCI

摘要: Accurate segmentation of leaf diseases is crucial for crop health management and disease prevention. However, existing studies fall short in addressing issues such as blurred disease spot boundaries and complex feature distributions in disease images. Although the vision foundation model, Segment Anything Model (SAM), performs well in general segmentation tasks within natural scenes, it does not exhibit good performance in plant disease segmentation. To achieve fine-grained segmentation of leaf disease images, this study proposes an advanced model: Enhanced Multi-Scale SAM (EMSAM). EMSAM employs the Local Feature Extraction Module (LFEM) and the Global Feature Extraction Module (GFEM) to extract local and global features from images respectively. The LFEM utilizes multiple convolutional layers to capture lesion boundaries and detailed characteristics, while the GFEM fine-tunes ViT blocks using a Multi-Scale Adaptive Adapter (MAA) to obtain multi-scale global information. Both outputs of LFEM and GFEM are then effectively fused in the Feature Fusion Module (FFM), which is optimized with cross-branch and channel attention mechanisms, significantly enhancing the model's ability to handle blurred boundaries and complex shapes. EMSAM integrates lightweight linear layers as classification heads and employs a joint loss function for both classification and segmentation tasks. Experimental results on the PlantVillage dataset demonstrate that EMSAM outperforms the second-best state-of-the-art semantic segmentation model by 2.45% in Dice Coefficient and 6.91% in IoU score, and surpasses the baseline method by 21.40% and 22.57%, respectively. Particularly, for images with moderate and severe disease levels, EMSAM achieved Dice Coefficients of 0.8354 and 0.8178, respectively, significantly outperforming other semantic segmentation algorithms. Additionally, the model achieved a classification accuracy of 87.86% across the entire dataset, highlighting EMSAM's effectiveness and superiority in plant disease segmentation and classification tasks.

分类号:

  • 相关文献
作者其他论文 更多>>