Statistical method for mapping QTLs for complex traits based on two backcross populations

文献类型: 外文期刊

第一作者: Zhu ZhiHong

作者: Zhu ZhiHong;Yang Jian;Xu HaiMing;Hayart, Yousaf;Cao LiYong;Lou XiangYang

作者机构:

关键词: QTL mapping;double backcross populations;mixed linear model;epistasis;QTL-by-environment interaction

期刊名称:CHINESE SCIENCE BULLETIN ( 影响因子:1.649; 五年影响因子:1.738 )

ISSN: 1001-6538

年卷期: 2012 年 57 卷 21 期

页码:

收录情况: SCI

摘要: Most important agronomic and quality traits of crops are quantitative in nature. The genetic variations in such traits are usually controlled by sets of genes called quantitative trait loci (QTLs), and the interactions between QTLs and the environment. It is crucial to understand the genetic architecture of complex traits to design efficient strategies for plant breeding. In the present study, a new experimental design and the corresponding statistical method are presented for QTL mapping. The proposed mapping population is composed of double backcross populations derived from backcrossing both homozygous parents to DH (double haploid) or RI (recombinant inbreeding) lines separately. Such an immortal mapping population allows for across-environment replications, and can be used to estimate dominance effects, epistatic effects, and QTL-environment interactions, remedying the drawbacks of a single backcross population. In this method, the mixed linear model approach is used to estimate the positions of QTLs and their various effects including the QTL additive, dominance, and epistatic effects, and QTL-environment interaction effects (QE). Monte Carlo simulations were conducted to investigate the performance of the proposed method and to assess the accuracy and efficiency of its estimations. The results showed that the proposed method could estimate the positions and the genetic effects of QTLs with high efficiency.

分类号:

  • 相关文献

[1]Genetic analysis and QTL mapping of oil content and seed index using two recombinant inbred lines and two backcross populations in Upland cotton. Shang, Lianguang,Abduweli, Abdugheni,Hua, Jinping,Wang, Yumei.

[2]Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L.. Wang, Furong,Xu, Zhenzhen,Sun, Ran,Gong, Yongchao,Liu, Guodong,Zhang, Jingxia,Wang, Liuming,Zhang, Chuanyun,Zhang, Jun,Wang, Furong,Xu, Zhenzhen,Sun, Ran,Fan, Shoujin,Zhang, Jun.

[3]QTL x environment interactions in rice. I. Heading date and plant height. Li, ZK,Yu, SB,Lafitte, HR,Huang, N,Courtois, B,Hittalmani, S,Vijayakumar, CHM,Liu, GF,Wang, GC,Shashidhar, HE,Zhuang, JY,Zheng, KL,Singh, VP,Sidhu, JS,Srivantaneeyakul, S,Khush, GS. 2003

[4]RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper (Nilaparvata lugens). Xu, XF,Mei, HW,Luo, LJ,Cheng, XN,Li, ZK. 2002

[5]Effect of the scale of quantitative trait data on the representativeness of a cotton germplasm sub-core collection. Wang, Jian-cheng,Hu, Jin,Guan, Ya-jing,Zhu, Yan-fang,Wang, Jian-cheng. 2013

[6]Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Li, Yong,Luo, Dagang,Gao, Fangyuan,Lu, Xianjun,Ren, Guangjun,Agrama, Hesham A..

[7]Assessment of different genetic distances in constructing cotton core subset by genotypic values. Wang, Jian-cheng,Hu, Jin,Huang, Xin-xian,Xu, Sheng-chun,Wang, Jian-cheng. 2008

[8]Association Mapping for Aluminum Tolerance in a Core Collection of Rice Landraces. Zhang, Peng,Zhong, Kaizhen,Tong, Hanhua,Zhang, Peng,Shahid, Muhammad Qasim,Li, Jinquan,Li, Jinquan. 2016

[9]QTL Detection and Epistasis Analysis for Heading Date Using Single Segment Substitution Lines in Rice (Oryza sativa L.). Li Guang-xian,Li Si-shen,Chen Ai-hua,Liu Xu,Wang Wen-ying,Ding Han-feng,Li Jun,Liu Wei,Yao Fang-yin,Li Guang-xian. 2014

[10]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[11]Identification of QTLs with main, epistatic and QTL by environment interaction effects for seed shape and hundred-seed weight in soybean across multiple years. Liang, Huizhen,Xu, Lanjie,Yu, Yongliang,Yang, Hongqi,Dong, Wei,Zhang, Haiyang.

[12]Quantitative Trait Loci Mapping for Chlorophyll Fluorescence and Associated Traits in Wheat (Triticum aestivum). Yang, De-Long,Jing, Rui-Lian,Chang, Xiao-Ping,Li, We.

[13]Bayesian Analysis for Genetic Architectures of Body Weights and Morphological Traits Using Distorted Markers in Japanese Flounder Paralichthys olivaceus. Cui, Yan,Wang, Hongwei,Liu, Haijin,Yang, Runqing,Cui, Yan,Qiu, Xuemei.

[14]Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Li, ZK,Arif, M,Zhong, DB,Fu, BY,Xu, JL,Domingo-Rey, J,Ali, J,Vijayakumar, CHM,Yu, SB,Khush, GS.

[15]Dissection of additive, epistatic and QTL x environment effects involved in oil content variations in rapeseed. Huang, Jixiang,Chen, Fei,Ni, Xiyuan,Wang, Yilong,Liu, Han,Zhao, Jianyi,Chen, Fei,Zhang, Haozhong,Wang, Yilong,Yao, Xiangtan,Xu, Haiming,Wang, Hao,Meng, Jinling.

[16]Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids. Shang, Lianguang,Cai, Shihu,Wang, Xiaocui,Li, Yuhua,Abduweli, Abdugheni,Hua, Jinping,Wang, Yumei. 2016

[17]Genetic dissection of growth traits in a Chinese indigenous x commercial broiler chicken cross. Sheng, Zheya,Hu, Xiaoxiang,Li, Ning,Sheng, Zheya,Pettersson, Mats E.,Shen, Xia,Carlborg, Orjan,Luo, Chenglong,Qu, Hao,Shu, Dingming. 2013

[18]Identification of genome-wide SNP-SNP interactions associated with important traits in chicken. Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Kramer, Luke M.,Reecy, James M.. 2017

[19]Mapping QTL with Main Effect, Digenic Epistatic and QTL x Environment Interactions of Panicle Related Traits in Rice (Oryza sativa). Leng, Yujia,Huang, Lichao,Chen, Long,Ren, Deyong,Yang, Yaolong,Zhang, Guangheng,Hu, Jiang,Zhu, Li,Guo, Longbiao,Qian, Qian,Zeng, Dali,Leng, Yujia,Lin, Yongjun,Leng, Yujia,Lin, Yongjun,Xue, Dawei. 2017

[20]QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits. Xu, Pei,Wu, Xiaohua,Wang, Baogen,Hu, Tingting,Lu, Zhongfu,Liu, Yonghua,Qin, Dehui,Wang, Sha,Li, Guojing. 2013

作者其他论文 更多>>