PeanutDB: an integrated bioinformatics web portal for Arachis hypogaea transcriptomics

文献类型: 外文期刊

第一作者: Shu, Changlong

作者: Shu, Changlong;Zhang, Jie;Schmidt, Emily;Li, Pei;Lenox, Douglas;Liu, Lin;Liang, Chun;Schmidt, Emily;Lenox, Douglas;Liang, Chun

作者机构:

关键词: Peanut;Arachis hypogaea;Transcriptome sequencing;Transcriptome assembly;Database;PeanutDB;SNP;SSR;Functional annotation

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2012 年 12 卷

页码:

收录情况: SCI

摘要: Background: The peanut (Arachis hypogaea) is an important crop cultivated worldwide for oil production and food sources. Its complex genetic architecture (e.g., the large and tetraploid genome possibly due to unique cross of wild diploid relatives and subsequent chromosome duplication: 2n = 4x = 40, AABB, 2800 Mb) presents a major challenge for its genome sequencing and makes it a less-studied crop. Without a doubt, transcriptome sequencing is the most effective way to harness the genome structure and gene expression dynamics of this non-model species that has a limited genomic resource. Description: With the development of next generation sequencing technologies such as 454 pyro-sequencing and Illumina sequencing by synthesis, the transcriptomics data of peanut is rapidly accumulated in both the public databases and private sectors. Integrating 187,636 Sanger reads (103,685,419 bases), 1,165,168 Roche 454 reads (333,862,593 bases) and 57,135,995 Illumina reads (4,073,740,115 bases), we generated the first release of our peanut transcriptome assembly that contains 32,619 contigs. We provided EC, KEGG and GO functional annotations to these contigs and detected SSRs, SNPs and other genetic polymorphisms for each contig. Based on both open-source and our in-house tools, PeanutDB presents many seamlessly integrated web interfaces that allow users to search, filter, navigate and visualize easily the whole transcript assembly, its annotations and detected polymorphisms and simple sequence repeats. For each contig, sequence alignment is presented in both bird's-eye view and nucleotide level resolution, with colorfully highlighted regions of mismatches, indels and repeats that facilitate close examination of assembly quality, genetic polymorphisms, sequence repeats and/or sequencing errors. Conclusion: As a public genomic database that integrates peanut transcriptome data from different sources, PeanutDB (http://bioinfolab.muohio.edu/txid3818v1) provides the Peanut research community with an easy-to-use web portal that will definitely facilitate genomics research and molecular breeding in this less-studied crop.

分类号:

  • 相关文献

[1]Screening and transcriptome analysis of water deficiency tolerant germplasms in peanut (Arachis hypogaea). Shen, Yi,Liu, Yonghui,Chen, Zhide,Shen, Yi,Zhiguo, E.,Zhang, Xiaojun.

[2]CottonFGD: an integrated functional genomics database for cotton. Zhu, Tao,Liang, Chengzhen,Meng, Zhigang,Sun, Guoqing,Meng, Zhaoghong,Guo, Sandui,Zhang, Rui. 2017

[3]The effect of low water content on seed longevity. Hu, CL,Zhang, YL,Tao, M,Hu, XR,Jiang, CY. 1998

[4]Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: The peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants. Zheng, Ling,Guo, Feng,Shi, Lingmin,Li, Xinguo,Shan, Lei,Wan, Shubo,Peng, Zhenying,Shockey, Jay.

[5]Rapid Identification of Peanut Hybrids with SSR-PCR. Hong Yanbin,Li Xingyu,Huang Shangzhi,Hong Yanbin,Chen Xiaoping,Liang Xuanqiang,Liu Hong. 2015

[6]Identification of a new stripe rust resistance gene in Chinese winter wheat Zhongmai 175. Lu Jia-ling,Chen Can,Liu Peng,He Zhong-hu,Xia Xian-chun,Chen Can,He Zhong-hu. 2016

[7]QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Wu, Qiuhong,Chen, Yongxing,Fu, Lin,Zhou, Shenghui,Chen, Jiaojiao,Zhao, Xiaojie,Zhang, Dong,Ouyang, Shuhong,Wang, Zhenzhong,Li, Dan,Wang, Guoxin,Zhang, Deyun,Yuan, Chengguo,You, Mingshan,Liu, Zhiyong,Yuan, Chengguo,Wang, Lixin,Han, Jun.

[8]Construction of a high-density genetic linkage map in pear (Pyrus communis x Pyrus pyrifolia nakai) using SSRs and SNPs developed by SLAF-seq. Wang, Long,Wu, Jun,Yin, Hao,Zhang, Shaoling,Wang, Long,Li, Xiugen,Wang, Lei,Xue, Huabai.

[9]An RNA Sequencing Transcriptome Analysis of Grasspea (Lathyrus Sativus L.) and Development of SSR and KASP Markers. Hao, Xiaopeng,Wang, Yan,Chang, Jianwu,Yang, Tao,Liu, Rong,Yao, Yang,Ren, Guixing,Zhang, Hongyan,Wang, Dong,Zong, Xuxiao,Hu, Jinguo,Burlyaeva, Marina. 2017

[10]QTL Analysis of Spike Morphological Traits and Plant Height in Winter Wheat (Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map. Zhai, Huijie,Feng, Zhiyu,Li, Jiang,Liu, Xinye,Ni, Zhongfu,Sun, Qixin,Zhai, Huijie,Feng, Zhiyu,Li, Jiang,Liu, Xinye,Ni, Zhongfu,Sun, Qixin,Xiao, Shihe. 2016

[11]Comprehensive analysis of expressed sequence tags from cultivated and wild radish (Raphanus spp.). Shen, Di,Qiu, Yang,Li, Xixiang,Shen, Di,Sun, Honghe,Huang, Mingyun,Zheng, Yi,Fei, Zhangjun,Sun, Honghe,Fei, Zhangjun. 2013

[12]Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata). Wang, Wanxing,Liu, Yumei,Fang, Zhiyuan,Yang, Limei,Yuan, Suxia,Sun, Jifeng,Zhuang, Mu,Zhang, Yangyong,Zeng, Aisong,Huang, Shunmou,Hua, Wei,Liu, Shengyi. 2012

[13]Molecular mapping of stripe rust resistance gene YrJ22 in Chinese wheat cultivar Jimai 22. Chen, Can,Ma, Chuanxi,He, Zhonghu,Lu, Jialing,Li, Jia,Ren, Yan,Xia, Xianchun,Ren, Yan,He, Zhonghu.

[14]Characterization of the bay scallop (Argopecten irradians concentricus Say) transcriptome and identification of growth-related genes. Fan, Sigang,Guo, Yihui,Liu, Baosuo,Fan, Sigang,Guo, Yihui,Liu, Baosuo,Yu, Dahui,Zhang, Dongling.

[15]Transcriptome analysis of sika deer in China. Jia, Bo-Yin,Ba, Heng-Xing,Wang, Gui-Wu,Yang, Ying,Cui, Xue-Zhe,Peng, Ying-Hua,Zheng, Jun-Jun,Xing, Xiu-Mei,Yang, Fu-He.

[16]Identifying Genetic Differences Between Dongxiang Blue-Shelled and White Leghorn Chickens Using Sequencing Data. Zhao, Qing-bo,Sun, Hao,Zhang, Zhe,Wang, Qi-shan,Zhang, Xiang-zhe,Pan, Yu-chun,Liao, Rong-rong,Yang, Chang-suo,Wang, Qi-shan,Zhang, Xiang-zhe,Pan, Yu-chun. 2018

[17]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[18]De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development. Chen, Honglin,Wang, Lixia,Liu, Xiaoyan,Hu, Liangliang,Wang, Suhua,Cheng, Xuzhen. 2017

[19]Large-scale sequencing of normalized full-length cDNA library of soybean seed at different developmental stages and analysis of the gene expression profiles based on ESTs. Sha, Ai-Hua,Li, Chen,Yan, Xiao-Hong,Shan, Zhi-Hui,Zhou, Xin-An,Jiang, Mu-Lan,Mao, Han,Chen, Bo,Wan, Xia,Wei, Wen-Hui.

[20]De Novo Transcriptome Assembly of Isatis indigotica at Reproductive Stages and Identification of Candidate Genes Associated with Flowering Pathways. Bai, Yu,Zhou, Ying,Tang, Xiaoqing,Wang, Yu,Wang, Fangquan,Yang, Jie. 2018

作者其他论文 更多>>