An analysis of soil carbon dynamics in long-term soil fertility trials in China

文献类型: 外文期刊

第一作者: Cong, Rihuan

作者: Cong, Rihuan;Xu, Minggang;Zhang, Wenju;Wang, Boren;Cong, Rihuan;Wang, Xiujun;Wang, Xiujun;Yang, Xueyun;Huang, Shaomin

作者机构:

关键词: Carbon inputs;Soil organic carbon;Non-linear equation;Long-term fertilization;Wheat-corn cropping system

期刊名称:NUTRIENT CYCLING IN AGROECOSYSTEMS ( 影响因子:3.27; 五年影响因子:3.767 )

ISSN: 1385-1314

年卷期: 2012 年 93 卷 2 期

页码:

收录情况: SCI

摘要: Soil carbon dynamics would be influenced by fertilization management in the agro-ecosystem. In this study, we analyze carbon inputs and soil organic carbon (SOC) dynamics under wheat-corn double cropping system based on four long-term experimental sites in different climate zones of China. We examine soil carbon responses to various carbon inputs by using linear (S = aA - b) and non-linear () equations. The term S is the SOC change rate; a, the proportion of C inputs incorporated into soil; b, minimum change rate of SOC; S (M) , the asymptotic maximum value at SOC change rate approaching infinity (Mg C ha(-1) year(-1)); S (L) , the decomposition rate of SOC substrates, and K (S) , a constant value (or 'half-saturation constant'). The S value is fitted using linear equation with SOC data over the duration of the experiment. The annual C input (A) is estimated by measured crop biomass and C input from manure. Different amounts of balanced fertilization show little impact on the C inputs derived by plants, reaching to similar to.5 Mg C ha(-1) year(-1). The SOC change rate is much higher under the manure application than treatments with chemical fertilizers only. Statistical analysis shows that the linear and non-linear equations perform equally well (p < 0.01) within the experimental data interval. But the non-linear equation is more suitable for specific purpose. Using the non-linear equation, we can predict that minimum C input to maintain the current SOC level would be 0.33-1.32 Mg C ha(-1) year(-1) at the most sites but only 0.03 Mg C ha(-1) year(-1) at the Changping site. The chemical nitrogen and phosphate fertilization yield sufficient carbon biomass inputs to maintain the current SOC levels. However, to increase SOC at 1 Mg C ha(-1) year(-1), soils need over 10 Mg C ha(-1) year(-1) at most sites. Our results suggest that the increment of SOC stocks would be mainly related to the additional carbon inputs for the long-term perspectives.

分类号:

  • 相关文献

[1]Soil carbon sequestration under long-term rice-based cropping systems of purple soil in Southwest China. Chen Qing-rui,Qin Yu-sheng,Chen Kun,Tu Shi-hua,Xu Ming-gang,Zhang Wen-ju. 2015

[2]Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Li Hui,Feng Wen-ting,Sun Nan,Xu Ming-gang,Li Hui,Feng Wen-ting,He Xin-hua,Zhu Ping,Gao Hong-jun. 2017

[3]Long-term fertilization effects on carbon and nitrogen in particle-size fractions of a Chinese Mollisol. Yan, Y.,He, H.,Zhang, X.,Chen, Y.,Xie, H.,Bai, Z.,Yan, Y.,Zhang, X.,Chen, Y.,Zhu, P.,Ren, J.,Wang, L.. 2012

[4]Impacts of long-term inorganic and organic fertilization on lignin in a Mollisol. Liu, Ning,He, Hongbo,Xie, Hongtu,Bai, Zhen,Zhang, Xudong,Liu, Ning,Peng, Chang,Zhu, Ping,Ren, Jun,Wang, Lichun. 2010

[5]Trends in grain yields and soil organic C in a long-term fertilization experiment in the China Loess Plateau. Xu, Minggang,Fan, Tinglu,Song, Shangyou,Fan, Tinglu,Zhou, Guangye,Ding, Linping.

[6]The trend of soil organic carbon, total nitrogen, and wheat and maize productivity under different long-term fertilizations in the upland fluvo-aquic soil of North China. Yang, Jun,Ren, Shun-rong,Liu Hailong.

[7]Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Li, Juan,Wen, Yanchen,Li, Yanting,Yang, Xiangdong,Lin, Zhian,Zhao, Bingqiang,Li, Xuhua,Song, Zhenzhen,Cooper, Julia Mary. 2018

[8]Long-term organic and inorganic fertilizations enhanced basic soil productivity in a fluvo-aquic soil. Zha Yan,Wu Xue-ping,Gong Fu-fei,Xu Ming-gang,Zhang Hui-min,Cai Dian-xiong,Chen Li-ming,Huang Shao-min. 2015

[9]Long-term fertilization effects on organic carbon fractions in a red soil of China. Tong, Xiaogang,Xu, Minggang,Wang, Xiujun,Zhang, Wenju,Cong, Rihuan,Tong, Xiaogang,Wang, Xiujun,Cong, Rihuan,Bhattacharyya, Ranjan. 2014

[10]Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Xu, Minggang,Wang, Xiujun,Wang, Xiujun,Huang, Qinhai,Nie, Jun,Li, Zuzhang,Li, Shuanglai,Hwang, Seon Woong,Lee, Kyeong Bo. 2012

[11]Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Zhang, Jing,Hu, Kelin,Li, Baoguo,Li, Kejiang,Zheng, Chunlian.

[12]Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China. Zhang, Wenju,Xu, Minggang,Wang, Boren,Wang, Xiujun.

[13]Diversity and Abundance of Soil Animals as Influenced by Long-Term Fertilization in Grey Desert Soil, China. Jiang, Maibo,Wang, Xihe,Sun, Xueqing,Liu, Hua,Jiang, Maibo,Liusui, Yunhao,Jiang, Maibo,Zhao, Chengyi. 2015

[14]Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Zhang, Shuiqing,Guo, Doudou,Huang, Shaomin,Ai, Chao,Zhang, Xin,Zhou, Wei. 2018

[15]Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Duan, Yinghua,Xu, Minggang,Liu, Hongbin,Wang, Bairen,Gao, Suduan,Yang, Xueyun,Huang, Shaomin. 2014

[16]Changes in Organic Carbon Index of Grey Desert Soil in Northwest China After Long-Term Fertilization. Xu Yong-mei,Xu Ming-gang,Zhang Wen-ju,Jiang Gui-ying,Xu Yong-mei,Liu Hua,Wang Xi-he,Xu Yong-mei,Liu Hua,Wang Xi-he. 2014

[17]Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy. Gao Qiang,Zhang Jin-jing,Li Hui,Wang Shuai,Zhu Ping,Zhao Yi-dong. 2015

[18]Soil Organic Carbon Accumulation Increases Percentage of Soil Olsen-P to Total P at Two 15-Year Mono-Cropping Systems in Northern China. Shen Pu,He Xin-hua,Xu Ming-gang,Zhang Hui-min,He Xin-hua,Peng Chang,Gao Hong-jun,Liu Hua,Xu Yong-mei,Qin Song,Xiao Hou-jun. 2014

[19]Soil pH Dynamics and Nitrogen Transformations Under Long-Term Chemical Fertilization in Four Typical Chinese Croplands. Meng Hong-qi,Lu Jia-long,Meng Hong-qi,Xu Ming-gang,Wang Bo-ren,Zhang Hui-min,Meng Hong-qi,He Xin-hua,Li Jian-wei,Shi Xiao-jun,Peng Chang. 2013

[20]Bacterial Community Structure after Long-term Organic and Inorganic Fertilization Reveals Important Associations between Soil Nutrients and Specific Taxa Involved in Nutrient Transformations. Li, Fang,Zhang, Jiabao,Yin, Jun,Li, Fang,Chen, Lin,Zhang, Jiabao,Huang, Shaomin. 2017

作者其他论文 更多>>