Genetic diversity and geographical peculiarity of Tibetan wild soybean (Glycine soja)

文献类型: 外文期刊

第一作者: Wang, Ke-Jing

作者: Wang, Ke-Jing;Li, Xiang-Hua

作者机构:

关键词: Genetic diversity;Geographical differentiation;Glycine soja;Tibet;Wild soybean

期刊名称:GENETIC RESOURCES AND CROP EVOLUTION ( 影响因子:1.524; 五年影响因子:1.713 )

ISSN: 0925-9864

年卷期: 2012 年 59 卷 4 期

页码:

收录情况: SCI

摘要: Tibet is the highest Plateau in China and the world, however wild soybean has been found in its southeastern fringe region adjacent to the northwest of Yunnan Province. Tibetan wild soybean was distributed only in the Gongrigabuqu-River Gorge in southeast Tibet. This regional plant species belong to the flora of Himalayan-Hengduan Mountains, which comprises composite elements of ancient arcto-tertiary flora, tropical and semitropical flora. To date, few studies have been carried out on Tibetan wild soybean. Studying Tibetan wild soybean together with other regional ones helps to understand the history of the origin and dissemination of wild soybean species in China. Here we reported the status of genetic diversity in Tibetan wild soybean and the genetic relationship between Tibetan and other regional wild soybeans revealed by nuclear SSR markers. The results showed that the Tibetan wild soybean sample was significantly differentiated from other regional ones, as characterized by the lowest mean allelic richness ((r) over cap = 1.40) and gene diversity (H (e) = 0.130) and the highest ratios of regionally unique alleles (63.26%) and fixed alleles (46.94%). These genetic attributes suggested that Tibetan wild soybean may have undergone severe adaptation selection for the plateau climate and ecogeographical conditions, and had less genetic exchange with inland populations. The regional population south of the Changjiang River (Central and South China) showed higher genetic richness. UPGMA cluster analysis revealed two large geographical groups, Tibetan and inland, and revealed closer relationship among the eastern populations, which suggested that the dissemination of this species in the eastern part of China might be rapider.

分类号:

  • 相关文献

[1]Genetic diversity and differentiation of Chinese wild soybean germplasm (G-soja Sieb. & Zucc.) in geographical scale revealed by SSR markers. Li, X. H.,Wang, K. J.,Jia, J. Z.,Li, X. H.. 2009

[2]A preliminary comparative evaluation of genetic diversity between Chinese and Japanese wild soybean (Glycine soja) germplasm pools using SSR markers. Wang, Ke-Jing,Takahata, Yoshihito. 2007

[3]Population structure of the wild soybean (Glycine soja) in China: implications from microsatellite analyses. Li, Yinghui,Qiu, Lijuan,Guo, Juan,Wang, Yunsheng,Chen, Jianjun,Wang, Ying,Liu, Yifei,Huang, Hongwen.

[4]Leaf shape polymorphism and its relationship to other characteristics of wild soybean (Glycine soja) in China. Yan, Xuefei,Liu, Shuyuan,Li, Jiandong,Guo, Wei,Sun, Bei,Zhang, Ling,Liu, Xiaodong,Zhao, Hongkun,Gao, Min. 2014

[5]Identification of a novel variant lacking group A soyasaponin in a Chinese wild soybean (Glycine soja Sieb. & Zucc.): implications for breeding significance. Takahashi, Yuya,Li, Xiang-Hua,Wang, Ke-Jing,Tsukamoto, Chigen. 2016

[6]Categories and components of soyasaponin in the Chinese wild soybean (Glycine soja) genetic resource collection. Takahashi, Yuya,Li, Xiang-Hua,Wang, Ke-Jing,Tsukamoto, Chigen.

[7]Phylogenetic relationships, interspecific hybridization and origin of some rare characters of wild soybean in the subgenus Glycine soja in China. Wang, Ke-Jing,Li, Xiang-Hua.

[8]Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja). Zhang, Hengyou,Kofsky, Janice,Song, Bao-Hua,Li, Chunying,Davis, Eric L.,Wang, Jinshe,Griffin, Joshua D.. 2016

[9]The possible origin of thick stem in Chinese wild soybean (Glycine soja). Wang, Ke-Jing,Li, Xiang-Hua. 2014

[10]Single nucleotide mutation leading to an amino acid substitution in the variant Tik soybean Kunitz trypsin inhibitor (SKTI) identified in Chinese wild soybean (Glycine soja Sieb. & Zucc.). Wang, Ke-Jing,Li, Xiang-Hua,Yamashita, Tetsuro,Takahata, Yoshihito.

[11]A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences. Guo, Juan,Wang, Yunsheng,Song, Chi,Zhou, Jianfeng,Huang, Hongwen,Wang, Ying,Qiu, Lijuan. 2010

[12]Genetic Diversity and Geographical Differentiation of Desmodium triflorum (L.) DC. in South China Revealed by AFLP Markers. Yue, Mao-feng,Zhou, Ren-chao,Huang, Ye-lin,Xin, Guo-rong,Shi, Su-hua,Yue, Mao-feng,Feng, Li.

[13]Association mapping of yield-related traits and SSR markers in wild soybean (Glycine sofa Sieb. and Zucc.). Hu, Zhenbin,Zhang, Dan,Zhang, Guozheng,Kan, Guizhen,Hong, Delin,Yu, Deyue,Hu, Zhenbin,Zhang, Dan. 2014

[14]Genetic characterization and gene flow in different geographical-distance neighbouring natural populations of wild soybean (Glycine soja Sieb. & Zucc.) and implications for protection from GM soybeans. Wang, Ke-Jing,Li, Xiang-Hua.

[15]Isolation and characterization of twenty-three polymorphic microsatellite loci in Schizothorax macropogon. Guo, Xiang-Zhao,Wang, Deng-Qiang,Guo, Xiang-Zhao,Zhang, Gui-Rong,Yan, Ruo-Jin,Ji, Wei,Yang, Rui-Bin,Wei, Kai-Jian,Guo, Xiang-Zhao,Zhang, Gui-Rong,Yan, Ruo-Jin,Ji, Wei,Yang, Rui-Bin,Wei, Kai-Jian. 2014

[16]Development and characterization of 20 polymorphic microsatellite loci for the Lhasa schizothoracin Schizothorax waltoni. Guo, Xiang-Zhao,Zhang, Gui-Rong,Wei, Kai-Jian,Ji, Wei,Yang, Rui-Bin,Gardner, Jonathan P. A.,Guo, Xiang-Zhao,Zhang, Gui-Rong,Wei, Kai-Jian,Ji, Wei,Yang, Rui-Bin,Gardner, Jonathan P. A.,Gardner, Jonathan P. A.,Wei, Qi-Wei. 2014

[17]Genetic diversity and population structure of Schizopygopsis younghusbandi Regan in the Yarlung Tsangpo River inferred from mitochondrial DNA sequence analysis. Guo, Shan-Shan,Zhang, Gui-Rong,Guo, Xiang-Zhao,Wei, Kai-Jian,Yang, Rui-Bin,Guo, Shan-Shan,Zhang, Gui-Rong,Guo, Xiang-Zhao,Wei, Kai-Jian,Yang, Rui-Bin,Wei, Qi-Wei.

[18]Genetic differentiation in relation to seed weights in wild soybean species (Glycine soja Sieb. & Zucc.). Wang, Ke-Jing,Li, Xiang-Hua,Yan, Mao-Fen.

[19]Identification of MicroRNAs in Wild Soybean (Glycine soja). Chen, Rui,Hu, Zheng,Zhang, Hui. 2009

[20]Phenotypic traits and diversity of different 100-seed weight accessions of wild soybean (Glycine soja Sieb. & Zucc.) in China. Yan, X.,Li, J.,Guo, W.,Liu, X.,Zhang, L.,Dong, Y.. 2017

作者其他论文 更多>>