Mapping the morphogenetic potential of antler fields through deleting and transplanting subregions of antlerogenic periosteum in sika deer (Cervus nippon)
文献类型: 外文期刊
第一作者: McMahon, Chris
作者: McMahon, Chris;Li, Chunyi;Gao, Zhiguang;Yang, Fuhe;Gao, Zhiguang;Gao, Zhiguang;Yang, Fuhe;Li, Chunyi
作者机构:
关键词: antler;antlerogenic periosteum;deletion;morphogenetic field;pedicle;transplantation
期刊名称:JOURNAL OF ANATOMY ( 影响因子:2.61; 五年影响因子:3.151 )
ISSN: 0021-8782
年卷期: 2012 年 220 卷 2 期
页码:
收录情况: SCI
摘要: Morphogenetic fields are a localised and regionally regulated group of cells capable of responding to signals leading to the development of organs. In this study, we sought to determine if antlers develop from such a field. We divided antler fields into four subregions: anterior, posterior, medial and lateral. The antlerogenic periosteum (AP) in each subregion (half of the AP) was deleted and then transplanted into an ectopic site. Antlers form from the cells exclusively residing in the AP, which is located in an antler field. The morphogenetic potential of each subregion was assessed by the antler growth from both the defective field and the transplantation site. The results showed that when the AP anterior half was absent, the fields formed antlers missing the first tine, whereas when the anterior half was present, the ectopic sites regenerated antlers containing the first tine. When the medial half was deleted, the fields could only grow spike antlers, and when the medial half was present, the ectopic sites developed branched antlers. In contrast, the antler fields were able to compensate the defects caused by ablation of the posterior or the lateral half to form relatively normal antlers; and the ectopic sites containing these grafted halves only formed spike antlers. Therefore, antler morphogenetic information was primarily held in the AP anterior-medial halves. This study substantiates the presence of morphogenetic fields in regulating the distinct pattern of antler growth, and demonstrates that antler development is a useful model for the study of morphogenetic fields.
分类号:
- 相关文献
作者其他论文 更多>>
-
Systemic factors associated with antler growth promote complete wound healing
作者:Guo, Qianqian;Zhang, Guokun;Ren, Jing;Li, Jiping;Wang, Zhen;Ba, Hengxing;Ye, Zihao;Li, Chunyi;Guo, Qianqian;Zheng, Junjun;Wang, Ying
关键词:
-
BRCA1 is involved in sustaining rapid antler growth possibly via balancing of the p53/endoplasmic reticulum stress signaling pathway
作者:Guo, Qianqian;Wang, Zhen;Li, Jiping;Ma, Chao;Ba, Hengxing;Zhang, Guokun;Li, Chunyi;Zheng, Junjun
关键词:Antler regeneration; BRCA1; Genome stability; p53
-
RXFP2-positive mesenchymal stem cells in the antlerogenic periosteum contribute to postnatal development of deer antlers
作者:Ba, Hengxing;Hu, Pengfei;Ma, Chao;Wang, Zhen;Shang, Yudong;Guo, Qianqian;Li, Chunyi;Yuan, Hongming;Wang, Datao;Li, Chunyi
关键词:
-
Antlers on does: An unexpected role of macrophages in deer biology
作者:Wang, Datao;Ba, Hengxing;Wang, Zhen;Ren, Jing;Ma, Chao;Zhang, Guokun;Melino, Gerry;Li, Chunyi;Wang, Datao;Li, Xunsheng;Shi, Wanwan;Sun, Hongmei;Ba, Hengxing;Li, Chunyi;Castillejos, Tomas Landete -;Chonco, Louis;Zhang, Guokun;Shi, Yufang
关键词:deer antler; macrophage; CCL2; grow antler; stem cell
-
Reciprocal negative feedback between Prrx1 and miR-140-3p regulates rapid chondrogenesis in the regenerating antler
作者:Hu, Pengfei;Zhang, Guokun;Ba, Hengxing;Ren, Jing;Li, Jiping;Wang, Zhen;Li, Chunyi;Hu, Pengfei
关键词:Chondrogenesis; Antler; miR-140-3p; Prrx1; Negative feedback
-
CCL3 Promotes Cutaneous Wound Healing Through Recruiting Macrophages in Mice
作者:Shi, Wanwan;Li, Xunsheng;Wang, Datao;Wang, Zhen;Li, Chenguang;Li, Chunyi
关键词:CCL3; macrophages; wound healing; reepithelialization
-
Conditioned media of deer antler stem cells accelerate regeneration of alveolar bone defects in rats
作者:Guo, Qianqian;Wang, Zhen;Ren, Jing;Li, Chunyi;Zheng, Junjun;Lin, Hongbing;Han, Zhongming;Du, Rui;Zhai, Jingjie;Zhao, Haiping
关键词: