Spatio-temporal responses of cropland phenophases to climate change in Northeast China

文献类型: 外文期刊

第一作者: Li Zhengguo

作者: Li Zhengguo;Tang Huajun;Yang Peng;Wu Wenbin;Chen Zhongxin;Zhou Qingbo;Zhang Li;Zou Jinqiu;Li Zhengguo;Tang Huajun;Yang Peng;Wu Wenbin;Chen Zhongxin;Zhou Qingbo;Zhang Li;Zou Jinqiu

作者机构:

关键词: cropland phenophase;SPOT/VGT;NDVI time series;climate change;Northeast China

期刊名称:JOURNAL OF GEOGRAPHICAL SCIENCES ( 影响因子:3.534; 五年影响因子:3.647 )

ISSN: 1009-637X

年卷期: 2012 年 22 卷 1 期

页码:

收录情况: SCI

摘要: We investigated the responses of cropland phenophases to changes of agricultural thermal conditions in Northeast China using the SPOT-VGT Normalized Difference Vegetation Index (NDVI) ten-day-composed time-series data, observed crop phenophases and the climate data collected from 1990 to 2010. First, the phenological parameters, such as the dates of onset-of-growth, peak-of-growth and end-of-growth as well as the length of the growing season, were extracted from the smoothed NVDI time-series dataset and showed an obvious correlation with the observed crop phenophases, including the stages of seedling, heading, maturity and the length of the growth period. Secondly, the spatio-temporal trends of the major thermal conditions (the first date of >= 10 degrees C, the first frost date, the length of the temperature-allowing growth period and the accumulated temperature (AT) of >= 10 degrees C) in Northeast China were illustrated and analyzed over the past 20 years. Thirdly, we focused on the responses of cropland phenophases to the thermal conditions changes. The results showed that the onset-of-growth date had an obvious positive correlation with the first date of >= 10 degrees C (P < 0.01), especially in the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle and eastern parts of Jilin Province. For the extracted length of growing season and the observed growth period, notable correlations were found in almost same regions (P < 0.05). However, there was no obvious correlation between the end-of-growth date and the first frost date in the study area. Opposite correlations were observed between the length of the growing season and the AT of >= 10 degrees C. In the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle part of Jilin and Liaoning Provinces, the positive correlation coefficients were higher than the critical value of 0.05, whereas the negative correlation coefficients reached a level of 0.55 (P < 0.05) in the middle and southern parts of Heilongjiang Province and some parts of the Sanjiang Plain. This finding indicated that the crop growth periods were shortened because of the elevated temperature; in contrast, the extended growth period usually meant a crop transformation from early- or middle-maturing varieties into middle or late ones.

分类号:

  • 相关文献

[1]Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Li, Zhengguo,Yang, Peng,Tang, Huajun,Wu, Wenbin,Liu, Zhenhuan,Zhang, Li,Li, Zhengguo,Yang, Peng,Tang, Huajun,Wu, Wenbin,Liu, Zhenhuan,Zhang, Li,Yin, He.

[2]Spatio-Temporal Changes in the Rice Planting Area and Their Relationship to Climate Change in Northeast China: A Model-Based Analysis. Xia Tian,Wu Wen-bin,Zhou Qing-bo,Yu Qiang-yi,Yang Peng,Tang Hua-jun,Verburg, Peter H.,Lu Zhong-jun. 2014

[3]Progressive and active adaptations of cropping system to climate change in Northeast China. Chen, Changqing,Qian, Chunrong,Zhang, Weijian,Deng, Aixing,Zhang, Weijian. 2012

[4]Understanding vegetation changes in northern China and Mongolia with change vector analysis. Wang, Lei,Li, Weiguo. 2016

[5]Land cover change detection by integrating object-based data blending model of Landsat and MODIS. Lu, Miao,Tang, Huajun,Yang, Peng,Wu, Wenbin,Chen, Jun,Rao, Yuhan.

[6]Spatio-temporal dynamics of maize cropping system in Northeast China between 1980 and 2010 by using spatial production allocation model. Tan Jieyang,Yang Peng,Wu Wenbin,Zhang Li,Li Zhipeng,Tang Huajun,Li Zhengguo,Liu Zhenhuan,You Liangzhi. 2014

[7]Reserving winter snow for the relief of spring drought by film mulching in northeast China. Jia, Hongchang,Zhang, Yong,Tian, Shiyan,Emon, Reza Mohammad,Wu, Tingting,Han, Tianfu,Jia, Hongchang,Yan, Hongrui,Lu, Wencheng,Zhang, Yong,Yang, Xingyong,Siddique, Kadambot H. M..

[8]Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China. Qian, Chunrong,Yu, Yang,Gong, Xiujie,Jiang, Yubo,Zhao, Yang,Yang, Zhongliang,Hao, Yubo,Li, Liang,Song, Zhenwei,Zhang, Weijian. 2016

[9]Divergent Hd1, Ghd7, and DTH7 Alleles Control Heading Date and Yield Potential of Japonica Rice in Northeast China. Ye, Jing,Niu, Xiaojun,Yang, Yaolong,Wang, Shan,Xu, Qun,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Feng, Yue,Wei, Xinghua,Ye, Jing,Wang, Shu. 2018

[10]Organic amendments increase corn yield by enhancing soil resilience to climate change. Song, Zhenwei,Deng, Aixing,Zheng, Chengyan,Zhang, Weijian,Gao, Hongjun,Zhu, Ping,Peng, Chang,Mannaf, Md Abdul,Islam, Md Nurul. 2015

[11]The Application of China-CGMS in the Main Crop Growth Monitoring in Northeast China. Huang Qing,Wu Wenbin,Teng Fei,Li Dandan,Ren Jianqiang,Deng Hui. 2012

[12]Estimates of N2O Emissions and Mitigation Potential from a Spring Maize Field Based on DNDC Model. Li Hu,Qiu Jian-Jun,Wang Li-gang,Xu Ming-yi,Liu Zhi-qiang,Wang Wei. 2012

[13]Clustering analysis of regional reference evapotranspiration and its components based on climatic variables across northeast China, 1961-2010. Liu, Yuan,Liu, Buchun,Yang, Xiaojuan,Bai, Wei,Liu, Yuan,Liu, Buchun,Yang, Xiaojuan,Bai, Wei,Liu, Yuan,Liu, Buchun,Yang, Xiaojuan,Bai, Wei. 2016

[14]Soil Organic Matter Spatial Distribution Change over the Past 20 Years and Its Causes in Northeast. Yao, Yanmin,Tang, Huajun,Tang, Pengqin,Yu, Shikai,Wang, Deying,Si, Haiqing,Chen, Youqi,He, Yingbin. 2013

[15]Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965-2008. Chen, Changqing,Lei, Chengxia,Qian, Chunrong,Zhang, Weijian,Deng, Aixing,Zhang, Weijian,Hoogmoed, Willem. 2011

[16]Geographical Variation of Climate Change Impact on Rice Yield in the Rice-Cropping Areas of Northeast China during 1980-2008. Liu, Zhenhuan,Zhang, Guojie,Yang, Peng. 2016

[17]Assess the Accuracy of the Globcover Cultivated Lan d Data in Northeast China. Zhang, Li,Wu, Wenbin,Zhou, Qingbo,Chen, Zhongxin,Li, Zhengguo,Wu, Wenbin,Zhou, Qingbo,Chen, Zhongxin,Li, Zhengguo. 2012

[18]Genetic analyses of heading date of Japonica rice cultivars from Northeast China. Wei, Xiangjin,Jiang, Ling,Xu, Junfeng,Zhang, Wenwei,Lu, Guangwen,Zhang, Yongsheng,Wan, Jianmin,Wan, Jianmin. 2008

[19]Model-based analysis of spatio-temporal changes in land use in Northeast China. Xia Tian,Wu Wenbin,Xia Tian,Wu Wenbin,Zhou Qingbo,Yu Qiangyi,Yang Peng,Verburg, Peter H.,Ye Liming,Ye Liming. 2016

[20]Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Li Hui,Feng Wen-ting,Sun Nan,Xu Ming-gang,Li Hui,Feng Wen-ting,He Xin-hua,Zhu Ping,Gao Hong-jun. 2017

作者其他论文 更多>>