The Role of Radical Burst in Plant Defense Responses to Necrotrophic Fungi

文献类型: 外文期刊

第一作者: Kulye, Mahesh S.

作者: Kulye, Mahesh S.;Liu Hua;Qiu De-wen

作者机构:

关键词: nitric oxide;mitogen-activated protein kinase;necrotrophic fungi;programmed cell death reactive oxygen species

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2012 年 11 卷 8 期

页码:

收录情况: SCI

摘要: Necrotrophic fungi, being the largest class of fungal plant pathogens, pose a serious economic problem to crop production. Nitric oxide (NO) is an essential regulatory molecule in plant immunity in synergy with reactive oxygen species (ROS). Most experimental data available on the roles of NO and ROS during plant-pathogen interactions are from studies of infections by potential biotrophic pathogens, including bacteria and viruses. However, there are several arguments about the role of ROS in defense responses during plants and necrotrophic pathogens interaction and little is known about the role of NO as a counterpart of ROS in disease resistance to necrotrophic pathogens. This review focuses on the recent knowledge about the role of oxidative burst in plant defense response to necrotrophic fungi.

分类号:

  • 相关文献

[1]Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. Kulye, Mahesh,Liu, Hua,Zhang, Yuliang,Zeng, Hongmei,Yang, Xiufen,Qiu, Dewen. 2012

[2]BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants. Zhang, Yi,Zhang, Yunhua,Qiu, Dewen,Zeng, Hongmei,Guo, Lihua,Yang, Xiufen.

[3]Anti-inflammatory effects of a methanolic extract of Castanea seguinii Dode in LPS-induced RAW264.7 macrophage cells. Lim, Yourim,Park, Ji-Won,Kwon, Ok-Kyoung,Lee, Jae-Won,Lee, Han-Sol,Ahn, Kyung-Seop,Lim, Yourim,Lee, Han-Sol,Han, Sang-Bae,Lee, Sangwoo,Choi, Sangho,Li, Wanyi,Jin, Hang. 2018

[4]Recombinant TB10.4 of Mycobacterium bovis induces cytokine production in RAW264.7 macrophages through activation of the MAPK and NF-kappa B pathways via TLR2. Liu, Shuqing,Jia, Hong,Hou, Shaohua,Zhang, Gaimei,Xin, Ting,Yuan, Weifeng,Guo, Xiaoyu,Li, Ming,Wu, Jing,Zhu, Hongfei,Li, Hegang,Li, Hegang,Gao, Xintao. 2014

[5]Cloning and analysis of the soybean MEKK gene. Sha, A. -H.,Ba, H. -P.,Shan, Z. -H.,Chen, H. -F.,Chen, S. -L.,Qiu, D. -Z.,Zhou, X. -A.,Sha, A. -H.,Chen, Y. -H.. 2015

[6]Selenium Inhibits LPS-Induced Pro-inflammatory Gene Expression by Modulating MAPK and NF-kappa B Signaling Pathways in Mouse Mammary Epithelial Cells in Primary Culture. Zhang, Wen,Wang, Tiancheng,Jiang, Haichao,Guo, Mengyao,Zhou, Ershun,Sun, Yong,Yang, Zhengtao,Cao, Yongguo,Zhang, Naisheng,Zhang, Runxiang,Xu, Shiwen. 2014

[7]Isolation and characterization of an oilseed rape MAP kinase BnMPK3 involved in diverse environmental stresses. Yu, SW,Zhang, LD,Zuo, KJ,Tang, DQ,Tang, KX.

[8]Expression Profiling of Mitogen-Activated Protein Kinase Genes Reveals Their Evolutionary and Functional Diversity in Different Rubber Tree (Hevea brasiliensis) Cultivars. Jin, Xiang,Zhu, Liping,Yao, Qi,Meng, Xueru,Ding, Guohua,Wang, Dan,Tong, Zheng,Wang, Xuchu,Jin, Xiang,Zhu, Liping,Xie, Quanliang,Tao, Chengcheng,Yu, Li,Li, Hongbin,Wang, Xuchu. 2017

[9]Identification of six mitogen-activated protein kinase (MAPK) genes in banana (Musa acuminata L. AAA group, cv. Cavendish) under infection of Fusarium Oxysporum f. sp cubense Tropical Race 4. Wang, Zhuo,Jia, Caihong,Li, Jianpin,Xu, Biyu,Jin, Zhiqiang,Jin, Zhiqiang.

[10]Label-free quantitative proteomics analysis of cotton leaf response to nitric oxide. Yanyan Meng,Feng Liu,Chaoyou Pang,Shuli Fan,Meizhen Song,Dan Wang,Weihua Li,Shuxun Yu.

[11]Enhanced Anti-Inflammatory Activities by the Combination of Luteolin and Tangeretin. Funaro, Antonietta,Wu, Xian,Song, Mingyue,Zheng, Jinkai,Guo, Shanshan,Rakariyatham, Kanyasiri,Xiao, Hang,Funaro, Antonietta,Rodriguez-Estrada, Maria Teresa,Xiao, Hang,Zheng, Jinkai,Guo, Shanshan. 2016

[12]Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings. Su, Jiuchang,Zhang, Yihua,Nie, Yang,Cheng, Dan,Shen, Wenbiao,Wang, Ren,Hu, Huali,Chen, Jun,Zhang, Jiaofei,Du, Yuanwei. 2018

[13]Exogenously Applied Nitric Oxide Enhances the Drought Tolerance in Hulless Barley. Zhong, Yan,Wu, Xiaoli. 2015

[14]Nitric oxide suppresses aluminum-induced programmed cell death in peanut (Arachis hypoganea L.) root tips by improving mitochondrial physiological properties. Huang, Wenjing,Oo, Thet Lwin,Gu, Minghua,Zhan, Jie,Wang, Aiqin,He, Long-Fei,He, Huyi,He, Long-Fei. 2018

[15]Effects of nitric oxide treatment on the cell wall softening related enzymes and several hormones of papaya fruit during storage. Guo, Qin,Chen, Weixin,Li, Xueping,Guo, Qin,Zhang, Yuli,Wang, Jide,Wu, Bin. 2014

[16]Nitrite oxide and inducible nitric oxide synthase were regulated by polysaccharides isolated from Glycyrrhiza uralensis Fisch. Cheng, Anwei,Jin, Zhengyu,Xu, Xueming,Wan, Fachun,Wang, Jiaqi. 2008

[17]hsdS, Belonging to the Type I Restriction-Modification System, Contributes to the Streptococcus suis Serotype 2 Survival Ability in Phagocytes. Xu, Bin,Zhang, Ping,Li, Weiyi,Liu, Rui,Tang, Jinsheng,Fan, Hongjie,Zhang, Ping,Fan, Hongjie. 2017

[18]Picomol Assay of Nitric Oxide Screening in Biological Samples by Derivatization Combined with High-throughput Microplate Format. Zhang, Xiaoling,Yang, Qiao. 2013

[19]Molecular regulation of terpenoid indole alkaloids pathway in the medicinal plant, Catharanthus roseus. Zhou, Mei-Liang,Wu, Yan-Min,Tang, Yi-Xiong,Zhou, Mei-Liang,Shao, Ji-Rong,Hou, Hong-Li,Zhu, Xue-Mei. 2010

[20]Nitric oxide synthase-dependent nitric oxide production enhances chilling tolerance of walnut shoots in vitro via involvement chlorophyll fluorescence and other physiological parameter levels. Dong, Ningguang,Qi, Jianxun,Chen, Yonghao,Hao, Yanbin,Li, Yuanfa. 2018

作者其他论文 更多>>