Effect of home processing on the distribution and reduction of pesticide residues in apples

文献类型: 外文期刊

第一作者: Kong, Z.

作者: Kong, Z.;Dong, F.;Liu, X.;Xu, J.;Li, M.;Zheng, Y.;Shan, W.

作者机构:

关键词: home processing;apple;pesticide residue;removal effect

期刊名称:FOOD ADDITIVES AND CONTAMINANTS PART A-CHEMISTRY ANALYSIS CONTROL EXPOSURE & RISK ASSESSMENT ( 影响因子:3.057; 五年影响因子:2.96 )

ISSN: 1944-0049

年卷期: 2012 年 29 卷 8 期

页码:

收录情况: SCI

摘要: The effect of home processing (washing, peeling, coring and juicing) on residue levels of chlorpyrifos, beta-cypermethrin, tebuconazole, acetamiprid and carbendazim in apple segments was investigated. The pesticide residues were determined by UPLC-MS/MS and GC with a flame photometric (FPD) and electron capture detection (ECD). The results indicated that the pesticide residue levels in the apple peel and core were higher compared with in the apple flesh. After peeled and cored apple was processed into apple juice and pomace, chlorpyrifos, beta-cypermethrin and tebuconazole were concentrated in the apple pomace. However, residues of acetamiprid and carbendazim were exceptions. The apple pomace was free of acetamiprid, which was mainly present in the apple juice. After washing the mean loss of chlorpyrifos, beta-cypermethrin, tebuconazole, acetamiprid and carbendazim from apples under recommended dosage and twofold higher dosage were 17-21%, 6.7-7.1%, 13-32%, 42-67% and 47-50%, respectively. The pesticide residues were significantly reduced in the edible part of the apple except for beta-cypermethrin during peeling and coring process. The removal effect of apple juicing was found to be the most pronounced on beta-cypermethrin residue, which was reduced in the range of 81-84%, and the reductions of chlorpyrifos, tebuconazole, acetamiprid and carbendazim upon apple juicing were in the range of 15-36%.

分类号:

  • 相关文献

[1]A chemometric processing-factor-based approach to the determination of the fates of five pesticides during apple processing. Li, Minmin,Liu, Yanan,Fan, Bei,Lu, Jia,He, Yan,Kong, Zhiqiang,Zhu, Yulong,Wang, Fengzhong,Jian, Qiu.

[2]Health risks of consuming apples with carbendazim, imidacloprid, and thiophanate-methyl in the Chinese population: Risk assessment based on a nonparametric probabilistic evaluation model. Ye, Mengliang,Nie, Jiyun,Li, Zhixia,Cheng, Yang,Zheng, Lijing,Xu, Guofeng,Yan, Zhen,Ye, Mengliang,Nie, Jiyun,Li, Zhixia,Cheng, Yang,Zheng, Lijing,Xu, Guofeng,Yan, Zhen,Ye, Mengliang,Nie, Jiyun,Li, Zhixia,Cheng, Yang,Zheng, Lijing,Xu, Guofeng,Yan, Zhen.

[3]Behaviour of spirotetramat residues and its four metabolites in citrus marmalade during home processing. Liu, Yanyu,Chen, Weijun,Sun, Dali,Gong, Lei,Jiang, Liyan,Jiao, Bining,Liu, Yanyu,Chen, Weijun,Sun, Dali,Gong, Lei,Jiang, Liyan,Jiao, Bining,Su, Xuesu,Jian, Qiu,Chen, Weijun,Jiao, Bining,Jiao, Bining.

[4]Removal Effect of Simulated Dairy Wastewater by SBR. Zuo, Jinlong,Yang, Xinguo,Chen, Daxiang,Wang, Xiaoyue,Wang, Xuewei,Wang, Xuming. 2016

[5]Study on NO2--N accumulationof soybean wastewater treatment by SBR process. Zuo, Jinlong,Chen, Daxiang,Yang, Xinguo,Wang, Xiaoyue,Wang, Xuewei,Wang, Xuming. 2016

[6]Determination of 4 Pesticides Residues in Citrus and Essential Oil by Ultra Performance Liquid Chromatography-Mass Spectrometry. Kong Zhi-Qiang,Dong Feng-Shou,Liu Xin-Gang,Xu Jun,Zheng Yong-Quan,Gong Yong,Shan Wei-Li. 2012

[7]Bagging Technology Reduces Pesticide Residues in Table Grapes. Wan, Yizhen,Hou, Qi-Rui,Wen, Yan,Wang, Lei,Lu, Quanyou,Wan, Yizhen,Hou, Qi-Rui,Wen, Yan,Wang, Lei,Lu, Quanyou.

[8]Concentration and dissipation of chlorantraniliprole and thiamethoxam residues in maize straw, maize, and soil. Zheng, Yongquan,He, Min,Jia, Hong C.,Song, Dan.

[9]Behavior of field-applied triadimefon, malathion, dichlorvos, and their main metabolites during barley storage and beer processing. Kong, Zhiqiang,Li, Minmin,Chen, Jieying,Gui, Yuejing,Bao, Yuming,Fan, Bei,Dai, Xiaofeng,Jian, Qiu,Francis, Frederic.

[10]Management of pesticide residues in China. Dong Feng-shou,Xu Jun,Liu Xin-gang,Zheng Yong-quan. 2015

[11]Risk assessment and ranking of pesticide residues in Chinese pears. Li Zhi-xia,Nie Ji-yun,Yan Zhen,Xu Guo-feng,Kuang Li-xue,Pan Li-gang,Pan Li-gang,Xie Han-zhong,Wang Cheng,Liu Chuan-de,Zhao Xu-bo,Guo Yong-ze. 2015

[12]An electrochemiluminescence aptasensor switch for aldicarb recognition via ruthenium complex-modified dendrimers on multiwalled carbon nanotubes. Li, Shuhuai,Liu, Chunhua,Han, Bingjun,Luo, Jinhui,Yin, Guihao,Li, Shuhuai,Liu, Chunhua,Han, Bingjun,Luo, Jinhui,Yin, Guihao. 2017

[13]Degradation of Chlorpyrifos and Fipronil in Rice from Farm to Fork and Risk Assessment. Zhang Cun-zheng,Liu Xian-jin,Tian Zi-hua,He Dan-jun,Zhang Xin-ming. 2010

[14]Determination of Aminoglycoside Fungicide Validamycin A in Rice Plant by Quick, Easy, Cheap, Effective, Rugged, and Safe Approach Using Ultra High Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. Dong, Fengshou,Xu, Jun,Liu, Xingang,Zheng, Yongquan,Liu, Na.

[15]Monitoring and dietary exposure assessment of pesticide residues in cowpea (Vigna unguiculata L. Walp) in Hainan, China. Duan, Yun,Li, Pingping,Li, Jianguo,Luo, Jinhui,Duan, Yun,Li, Pingping,Li, Jianguo,Luo, Jinhui,Guan, Ni.

[16]Chlorpyrifos Residual Behaviors in Field Crops and Transfers during Duck Pellet Feed Processing. Li, Rui,Wei, Wei,Ji, Xiaofeng,Zhou, Yu,Wang, Qiang,He, Liang,Hao, Lili.

[17]Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography-Mass Spectrometry for the Determination of Multiple Pesticides in Celery. Wei, Haifeng,Liu, Deyun,Xia, Gaofeng,Yang, Xiaoyun,Miao, Xuexue.

[18]Development of an immunochromatographic assay for the rapid detection of chlorpyrifos-methyl in water samples. Hua, Xiude,Qian, Guoliang,Hu, Baishi,Fan, Jiaqin,Qin, Na,Li, Gang,Wang, Yuyan,Liu, Fengquan,Yang, Jifei.

[19]Determination of oxathiapiprolin concentration and dissipation in grapes and soil by ultrahigh-performance liquid chromatography-tandem mass spectrometry. Yu, Pingzhong,Jia, Chunhong,Zhao, Ercheng,Chen, Li,Jing, Junjie,He, Min,He, Hongju.

[20]Genetic analysis of wild apple resources in Shandong province based on inter-simple sequence repeats (ISSR) and sequence-specific amplification polymorphism (S-SAP) markers. He, Ping,Li, Linguang,Li, Huifeng,Wang, Haibo,Yang, Jianming,Wang, Yuxia. 2011

作者其他论文 更多>>