Assessment of allelopathic effects of residues of Flaveria bidentis (L.) Kuntze on wheat seedlings

文献类型: 外文期刊

第一作者: Guo, Jian-Ying

作者: Guo, Jian-Ying;Wan, Fang-Hao;Zhang, Feng-Juan;Chen, Feng-xin;Guo, Ai-Ying

作者机构:

关键词: Flaveria bidentis residues;wheat seedling;allelopathy

期刊名称:ARCHIVES OF AGRONOMY AND SOIL SCIENCE ( 影响因子:3.092; 五年影响因子:2.745 )

ISSN: 0365-0340

年卷期: 2012 年 58 卷 3 期

页码:

收录情况: SCI

摘要: Flaveria bidentis (L.) Kuntze, an invasive plant, poses a serious threat to the structure and function of the native ecosystem in Hebei Provience, China. However, little is known about the allelopathic activity of the residues of this plant species. In this study, the impact of the phytotoxicity of unburnt (UR) and burnt (BR) residues of the exotic invasive weed on the growth of wheat (Triticum aestivvm L.) was assessed. Extracts prepared from both UR and BR reduced the shoot length, root length and dry weight of wheat significantly compared with the control, thereby indicating the presence of some water-soluble allelochemicals in F. bidentis residues. Growth studies conducted in soil amended with UR and BR extracts or residues also revealed phytotoxic effects towards wheat. A significant amount of phenolics was detected in the residue extracts and in residue-incorporated soil. The phenolic content rose with increasing residue concentration, thereby showing their direct involvement in the observed growth inhibition. The inhibition of wheat growth by the burnt residue and its water extracts was similar to that of unburnt residue, so burning it is not a good way to eliminate the allelopathic effects of the residue of F. bidentis on native plants.

分类号:

  • 相关文献

[1]Influence of coastal plain yellowtops (Flaveria bidentis) residues on growth of cotton seedlings and soil fertility. Guo, Jian-ying,Li, Wan-xue,Wan, Fang-Hao,Zhang, Feng-Juan. 2012

[2]Microbial composition and diversity are associated with plant performance: a case study on long-term fertilization effect on wheat growth in an Ultisol. Li, Lihua,Fan, Fenliang,Song, Alin,Yin, Chang,Cui, Peiyuan,Li, Zhaojun,Liang, Yongchao.

[3]Field monitoring of wheat seedling stage with hyperspectral imaging. Wu Qiong,Fang Jingjing,Ji Jianwei,Wang Cheng. 2016

[4]Relationship Between Allelopathic Effects and Functional Traits of Different Allelopathic Potential Rice Accessions at Different Growth Stages. Xu Gaofeng,Shen Shicai,Zhang Fudou,Zhang Yun,Hisashi, Kato-Noguchi,David, Roy Clements. 2018

[5]Allelopathic effects of allelochemicals of Ginkgo biloba leaf on fusarium wilt (Fusarium oxysporum) of hot pepper. Hou, Y. X.,Song, X. Y.,Yin, Y. L.,Li, Y. S.,Yang, J. S.,Zheng, J. Y.,Yin, Y. L.. 2016

[6]Weed-suppression ability of Oryza longistaminata and Oryza sativa. Zhanq, Fudou,Li, Tianlin,Shan, Qinli,Guo, Yiqing,Xu, Peng,Hu, Fengyi,Tao, Dayun. 2008

[7]Polyphenols and fatty acids responsible for anti-cyanobacterial allelopathic effects of submerged macrophyte Myriophyllum spicatum. Nakai, S.,Zou, G.,Okuda, T.,Nishijima, W.,Hosomi, M.,Okada, M..

[8]Use of allelopathy for weed management in China - A Review. Zhang, CX.

[9]Effects of three long-chain fatty acids present in peanut (Arachis hypogaea L.) root exudates on its own growth and the soil enzymes activities. Liu, Z. H.,Wang, C. B.,Guo, F.,Wang, M.,Zhang, Y. F.,Dong, L.,Wan, S. B..

[10]Allelopathic effects of wheat extracts and DIMBOA on weeds. Zhao, Y.,Dong, F. S.,Liu, X. G.,Yao, J. R.,Hurle, K..

[11]A Novel Biofilm carrier- Artificial Aquatic Mats vs a common biofilm carrier of carbon fiber: Effect on water quality and phosphorus releasing. Wang, Jinhua,Lu, Haiying,Yang, Linzhang,Wu, Yonghong,Chen, Jianzhen,Fang, Yanming,Yang, Linzhang. 2013

[12]Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Xu, XH,Zhou, B,Hu, F,Zhang, CX,Zhang, MX.

[13]Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum. Guo, Huiming,Pei, Xixiang,Cheng, Hongmei,Wan, Fanghao.

[14]Allelopathic effects of aerial parts of Descurainia sophia L. on wheat. Liu, X. G.,Lu, C. H.,Dong, F. S.,Xu, J.,Wu, Y. B.,Zheng, Y. Q.,Tian, F. J.,Wu, Y. B.. 2016

[15]Allelopathic effects of twelve hedgerow plant species on seed germination and seedling growth of wheat (Triticum astivum L). Cheng, Xu,Cai, Qingnian,Lin, Chaowen. 2012

[16]Allelopathy of rice (Oryza sativa L.) root exudates and its relations with Orobanche cumana Wallr. and Orobanche minor Sm. germination. Ma, Yongqing,Zhang, Meng,Li, Yaolin,Ma, Yongqing,Shui, Junfeng,Zhou, Yongjun. 2014

[17]Preliminary studies on the allelopathic potential of wild Rice (Oryza) germplasm. Guo, YQ,Zhang, FD,Tao, DY,Yu, LQ,David, G.

[18]Isolation and Identification of Potential Allelochemicals from Aerial Parts of Avena fatua L. and Their Allelopathic Effect on Wheat. Tian, Fajun,Tian, Yingying,Dong, Fengshou,Xu, Jun,Zheng, Yongquan,Tian, Fajun,Wu, Yanbing.

[19]Interference of allelopathic rice with penoxsulam-resistant barnyardgrass. Yang, Xue-Fang,Kong, Chui-Hua,Yang, Xia,Li, Yong-Feng.

[20]Allelopathic effects of winter wheat residues on germination and growth of crabgrass (Digitaria ciliaris) and corn yield. Wang, GQ,Li, BH,Blackshaw, RE.

作者其他论文 更多>>