Salt-Stress Response Mechanisms Using de Novo Transcriptome Sequencing of Salt-Tolerant and Sensitive Corchorus spp. Genotypes

文献类型: 外文期刊

第一作者: Yang, Zemao

作者: Yang, Zemao;Lu, Ruike;Dai, Zhigang;Tang, Qing;Cheng, Chaohua;Xu, Ying;Su, Jianguang;Yan, An;Yang, Wenting

作者机构:

关键词: ABA signaling;Corchorus;differentially expressed unigenes;methionine metabolism;salt stress;transcriptome

期刊名称:GENES ( 影响因子:4.096; 五年影响因子:4.339 )

ISSN: 2073-4425

年卷期: 2017 年 8 卷 9 期

页码:

收录情况: SCI

摘要: High salinity is a major environmental stressor for crops. To understand the regulatory mechanisms underlying salt tolerance, we conducted a comparative transcriptome analysis between salt-tolerant and salt-sensitive jute (Corchorus spp.) genotypes in leaf and root tissues under salt stress and control conditions. In total, 68,961 unigenes were identified. Additionally, 11,100 unigenes (including 385 transcription factors (TFs)) exhibited significant differential expression in salt-tolerant or salt-sensitive genotypes. Numerous common and unique differentially expressed unigenes (DEGs) between the two genotypes were discovered. Fewer DEGs were observed in salt-tolerant jute genotypes whether in root or leaf tissues. These DEGs were involved in various pathways, such as ABA signaling, amino acid metabolism, etc. Among the enriched pathways, plant hormone signal transduction (ko04075) and cysteine/methionine metabolism (ko00270) were the most notable. Eight common DEGs across both tissues and genotypes with similar expression profiles were part of the PYL-ABA-PP2C (pyrabactin resistant-like/regulatory components of ABA receptors-abscisic acid-protein phosphatase 2C). The methionine metabolism pathway was only enriched in salt-tolerant jute root tissue. Twenty-three DEGs were involved in methionine metabolism. Overall, numerous common and unique salt-stress response DEGs and pathways between salt-tolerant and salt-sensitive jute have been discovered, which will provide valuable information regarding salt-stress response mechanisms and help improve salt-resistance molecular breeding in jute.

分类号:

  • 相关文献

[1]Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). Lin, Jing. 2015

[2]Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq. Li Ming-na,Feng Zi-rong,Sun Yan,Zhang, Kun,Cao Shi-hao,Long Rui-cai,Kang Jun-mei,Wang Zhen,Liu Feng-qi. 2018

[3]Bioengineering approaches to improve the nutritional values of seeds by increasing their methionine content. Amir, Rachel,Amir, Rachel,Han, Tihanfu,Ma, Fengming. 2012

[4]A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2. Xu, Jianwen,Chen, Yihan,Qian, Luofeng,Mu, Rong,Yuan, Xi,Fang, Huimin,Huang, Xi,Xu, Enshun,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen,Chen, Yihan,Qian, Luofeng,Mu, Rong,Yuan, Xi,Fang, Huimin,Huang, Xi,Xu, Enshun,Zhang, Hongsheng,Huang, Ji. 2017

[5]Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2) Is Involved in ABA-Mediated Early Seedling Development. Yan, Jinping,He, Han,Tong, Shibo,Zhang, Wanrong,Wang, Jianmei,Li, Xufeng,Yang, Yi,Yan, Jinping. 2009

[6]Differential Activation of the Wheat SnRK2 Family by Abiotic Stresses. Zhang, Hongying,Jia, Hongfang,Li, Weiyu,Mao, Xinguo,Jing, Ruilian. 2016

[7]RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity. Liu, Peiqing,Gao, Rong,Dong, Hansong,Sun, Feng.

[8]Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. ZhongQun, He,ChaoXing, He,ZhiBin, Zhang,ZhiRong, Zou,HuaiSong, Wang.

[9]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[10]Cloning of the full-length cDNA of the wheat involved in salt stress: Root hair defective 3 gene (RHD3). Shan, L,Zhao, SY,Xia, GM. 2005

[11]Molecular cloning and expression analysis of FvMYB1 from Fraxinus velutina Torr.. Li, Tian,Bi, Yu-Ping,Li, Tian,Peng, Zhen-Ying,Bi, Yu-Ping,Fan, Zhong-Xue,Li, Tian,Peng, Zhen-Ying,Bi, Yu-Ping,Fan, Zhong-Xue,Li, Tian. 2013

[12]The K+/H+ Antiporter AhNHX1 Improved Tobacco Tolerance to NaCl Stress by Enhancing K+ Retention. Zhang, Wei-Wei,Meng, Jing-Jing,Yang, Sha,Guo, Feng,Li, Xin-Guo,Xing, Jin-Yi,Wan, Shu-Bo. 2017

[13]Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response. Zhang, Quan,Sun, Wei,Liu, Yan,Wang, Xingjun,Zhao, Yanxiu,Zhao, Chuanzhi,Li, Ming,Xia, Han,Sun, Mingnan,Li, Aiqin,Li, Changsheng,Zhao, Shuzhen,Hou, Lei,Picimbon, Jean-Francois,Wang, Xingjun. 2013

[14]A R2R3 MYB transcription factor from ash positively regulates salt response in tobacco. Li, Tian,Sun, Jingkuan,Li, Tian,Bi, Yuping. 2017

[15]Identification of Metabolites and Transcripts Involved in Salt Stress and Recovery in Peanut. Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Sui, Na,Liu, Shanshan,Duan, Guangyou. 2018

[16]Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean. Song, Hui,Wang, Pengfei,Hou, Lei,Zhao, Shuzhen,Zhao, Chuanzhi,Xia, Han,Li, Pengcheng,Zhang, Ye,Bian, Xiaotong,Wang, Xingjun. 2016

[17]Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Kong, Xiangqiang,Wang, Tao,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Dong, Hezhong,Wang, Tao,Dong, Hezhong.

[18]Study on DNA Cytosine Methylation of Cotton (Gossypium hirsutum L.) Genome and Its Implication for Salt Tolerance. ZHAO Yun-lei,YU Shu-xun,YE Wu-wei,WANG Hong-mei,WANG Jun-juan,FANG Bao-xing. 2010

[19]Epigenetic mechanisms of salt tolerance and heterosis in Upland cotton (Gossypium hirsutum L.) revealed by methylation-sensitive amplified polymorphism analysis. Baohua Wang,Mi Zhang,Rong Fu,Xiaowei Qian,Ping Rong,Yan Zhang,Peng Jiang,Junjuan Wang,Xuke Lu,Delong Wang,Wuwei Ye,Xinyu Zhu.

[20]Analysis of methylation-sensitive amplified polymorphism in different cotton accessions under salt stress based on capillary electrophoresis. Baohua Wang,Rong Fu,Mi Zhang,Zhenqian Ding,Lei Chang,Xinyu Zhu,Yafeng Wang,Baoxiang Fan,Wuwei Ye,Youlu Yuan.

作者其他论文 更多>>