The pathogenic and vaccine strains of equine infectious anemia virus differentially induce cytokine and chemokine expression and apoptosis in macrophages

文献类型: 外文期刊

第一作者: Lin, Yue-Zhi

作者: Lin, Yue-Zhi;Cao, Xue-Zhi;Li, Liang;Li, Li;Jiang, Cheng-Gang;Wang, Xue-Feng;Ma, Jian;Zhou, Jian-Hua

作者机构:

关键词: EIAV;Cytokines;Chemokines;Expression;Apoptosis

期刊名称:VIRUS RESEARCH ( 影响因子:3.303; 五年影响因子:3.445 )

ISSN: 0168-1702

年卷期: 2011 年 160 卷 1-2 期

页码:

收录情况: SCI

摘要: The attenuated equine infectious anemia virus (EIAV) vaccine was the first attenuated lentivirus vaccine to be used in a large-scale application and has been used to successfully control the spread of equine infectious anemia (EIA) in China. To better understand the potential role of cytokines in the pathogenesis of EIAV infection and resulting immune response, we used branched DNA technology to compare the mRNA expression levels of 12 cytokines and chemokines, including IL-1 alpha, IL-1 beta, IL-4, IL-10, TNF-alpha, IFN-gamma, IP-10, IL-8, MIP-1 alpha, MIP-1 beta, MCP-1, and MCP-2, in equine monocyte-derived macrophages (eMDMs) infected with the EIAV(DLV121) vaccine strain or the parental EIAV(DLV34) Pathogenic strain. Infection with EIAV(DLV34) and EIAV(DLV121) both caused changes in the mRNA levels of various cytokines and chemokines in eMDMs. In the early stage of infection with EIAV(DLV34) (0-24 h), the expression of the pro-inflammatory cytokines TNF-alpha and IL-1 beta were significantly up-regulated, while with EIAV(DLV121), expression of the anti-inflammatory cytokine IL-4 was markedly up-regulated. The effects on the expression of other cytokines and chemokines were similar between these two strains of virus. During the first 4 days after infection, the expression level of IL-4 in cells infected with the pathogenic strain were significantly higher than that in cells infected with the vaccine strain, but the expression of IL-1 alpha and IL-1 beta induced by the vaccine strain was significantly higher than that observed with the pathogenic strain. In addition, after 4 days of infection with the pathogenic strain, the expression levels of 5 chemokines, but not IP-10, were markedly increased in eMDMs. In contrast, the vaccine strain did not up-regulate these chemokines to this level. Contrary to our expectation, induced apoptosis in eMDMs infected with the vaccine strain was significantly higher than that infected with the pathogenic strain 4 days and 6 days after infection. Together, these results contribute to a greater understanding of the pathogenesis of EIAV and of the mechanisms by which the immune response is induced after EIAV infection. (C) 2011 Elsevier B.V. All rights reserved.

分类号:

  • 相关文献

[1]Microarray analysis of differentially expressed microRNAs in non-regressed and regressed bovine corpus luteum tissue; microRNA-378 may suppress luteal cell apoptosis by targeting the interferon gamma receptor 1 gene. Ma, Tenghe,Jiang, Hao,Gao, Yan,Dai, Lisheng,Xiong, Qiuhong,Xu, Yanli,Zhao, Zhihui,Zhang, Jiabao,Gao, Yan,Zhang, Jiabao,Zhao, Yumin.

[2]Co-administration of porcine-specific CpG oligodeoxynucleotide enhances the immune responses to pseudorabies attenuated virus vaccine in newborn piglets in vivo. Zhang, LH,Guo, Y,Tian, XS,Zhou, FZ.

[3]Enhanced antitumor immunity is elicited by adenovirus-mediated gene transfer of CCL21 and IL-15 in murine colon carcinomas. Zhao, Dong-xu,Zhao, Kun-chi,Liu, Ming-yuan,Li, Yang,Li, Zhi-jie,Li, Ya-gang,Zhang, Meng-meng,Zhang, Yang,Zhang, Xiao-na,Yu, Xiao-wei,Liu, Ming-yuan.

[4]Adenovirus-mediated CCL20/IL-15 gene transfer enhances antitumor immunity in mice. Liu, Guang-yao,Liu, Ming-yuan,Wang, Xue-lin,Li, Yang,Li, Zhi-jie,Jia, Qiu-ying,Li, Ya-gang,Zhang, Meng-meng,Liu, Ming-yuan.

[5]The complete chloroplast genome of Tibetan hulless barley. Zeng, Quan Xing,Yuan, Jun Hong,Wang, Lin Yu,Xu, Jun Qi,Nyima, Tashi,Zeng, Quan Xing,Yuan, Jun Hong,Wang, Lin Yu,Xu, Jun Qi,Nyima, Tashi,Zeng, Quan Xing,Yuan, Jun Hong,Wang, Lin Yu,Xu, Jun Qi.

[6]Genomic analysis of an effective lentiviral vaccine-attenuated equine infectious anemia virus vaccine EIAV(FDDV13). Qi, Xu,Su, Zhiqiang,Wang, Xuefeng,Wang, Shuai,Lin, Yuezhi,Jiang, Chenggang,Ma, Jian,Zhao, Liping,Lv, Xiaoling,Shen, Rongxian,Kong, Xiangang,Zhou, Jianhua,Wang, Xuefeng,Wang, Fenglong,Ma, Jian. 2010

[7]A pilot study on interaction between donkey tetherin and EIAV stains with different virulent and replication characteristics. Yao, Qiucheng,Li, Yanfei,Yao, Qiucheng,Ma, Jian,Wang, Xuefeng,Guo, Miaomiao,Wang, Xiaojun.

[8]A proviral derivative from a reference attenuated EIAV vaccine strain failed to elicit protective immunity. Ma, Jian,Shi, Nan,Jiang, Cheng-Gang,Lin, Yue-Zhi,Wang, Xue-Feng,Wang, Shuai,Lv, Xiao-Ling,Zhao, Li-Ping,Kong, Xian-Gang,Zhou, Jian-Hua,Shen, Rong-Xian,Ma, Jian,Shao, Yi-Ming. 2011

[9]Antiviral potency and functional analysis of tetherin orthologues encoded by horse and donkey. Yin, Xin,Gu, Qinyong,Wei, Ping,Yin, Xin,Guo, Miaomiao,Gu, Qinyong,Wu, Xingliang,Wang, Xiaojun. 2014

[10]Development and Application of an Indirect ELISA for the Detection of gp45 Antibodies to Equine Infectious Anemia Virus. Du, Cheng,Li, Yi-Jing,Du, Cheng,Hu, Zhe,Hu, Sen-Dong,Lin, Yue-Zhi,Wang, Xiaojun. 2018

[11]Mice transgenic for equine cyclin T1 and ELR1 are susceptible to equine infectious anemia virus infection. Du, Cheng,Ma, Jian,Liu, Qiang,Li, Yun-Fei,He, Xi-Jun,Lin, Yue-Zhi,Wang, Xue-Feng,Meng, Qing-Wen,Wang, Xiaojun,Zhou, Jian-Hua,Du, Cheng. 2015

[12]Structural and biochemical insights into the V/I505T mutation found in the EIAV gp45 vaccine strain. Du, Jiansen,Ma, Jing,Wang, Jianxin,Liu, Fang,Qiao, Wentao,Liu, Xinqi,Wang, Xuefeng,Qin, Yuyin,Zhu, Chunhui,Zhou, Jianhua,Shao, Yiming,Shao, Yiming. 2014

[13]Genetic Evolution during the development of an attenuated EIAV vaccine. Wang, Xue-Feng,Lin, Yue-Zhi,Li, Qiang,Liu, Qiang,Zhao, Wei-Wei,Du, Cheng,Chen, Jie,Wang, Xiaojun,Zhou, Jian-Hua,Wang, Xue-Feng,Li, Qiang,Zhou, Jian-Hua. 2016

[14]Reverse mutation of the virulence-associated S2 gene does not cause an attenuated equine infectious anemia virus strain to revert to pathogenicity. Gao, Xu,Jiang, Cheng-Gang,Wang, Xue-Feng,Lin, Yue-Zhi,Ma, Jian,Han, Xiu-E,Zhao, Li-Ping,Shen, Rong-Xian,Xiang, Wen-Hua,Zhou, Jian-Hua,Gao, Xu,Han, Xiu-E.

[15]Proteomic alteration of equine monocyte-derived macrophages infected with equine infectious anemia virus. Du, Cheng,Liu, Hai-Fang,Lin, Yue-Zhi,Wang, Xue-Feng,Ma, Jian,Wang, Xiaojun,Zhou, Jian-Hua,Du, Cheng,Li, Yi-Jing,Zhou, Jian-Hua.

[16]A Unique Evolution of the S2 Gene of Equine Infectious Anemia Virus in Hosts Correlated with Particular Infection Statuses. Wang, Xue-Feng,Wang, Shuai,Liu, Qiang,Lin, Yue-Zhi,Du, Cheng,Tang, Yan-Dong,Na, Lei,Wang, Xiaojun,Zhou, Jian-Hua,Zhou, Jian-Hua. 2014

[17]Genetic variation in the long terminal repeat associated with the transition of Chinese equine infectious anemia virus from virulence to avirulence. Wei, Lili,Lu, Xiaoling,Zhao, Liping,Xiang, Wenhua,Xue, Fei,Shen, Rongxian,Wang, Xiaojun,Wei, Lili,Fan, Xiujuan,Zhang, Xiaoyan,Shao, Yiming. 2009

[18]An attenuated EIAV vaccine strain induces significantly different immune responses from its pathogenic parental strain although with similar in vivo replication pattern. Lin, Yue-Zhi,Shen, Rong-Xian,Zhu, Zhen-Ying,Deng, Xi-Lin,Cao, Xue-Zhi,Wang, Xue-Feng,Ma, Jian,Jiang, Cheng-Gang,Zhao, Li-Ping,Lv, Xiao-Ling,Zhou, Jian-Hua,Shao, Yi-Ming. 2011

[19]The integration of a macrophage-adapted live vaccine strain of equine infectious anaemia virus (EIAV) in the horse genome. Liu, Qiang,Wang, Xue-Feng,Du, Cheng,Lin, Yue-Zhi,Ma, Jian,Zhou, Jian-Hua,Wang, Xiaojun,Wang, Yu-Hong. 2017

[20]An attenuated EIAV strain and its molecular clone strain differentially induce the expression of Toll-like receptors and type-I interferons in equine monocyte-derived macrophages. Ma, Jian,Wang, Shan-Shan,Lin, Yue-Zhi,Liu, Hai-Fang,Wei, Hua-Mian,Du, Cheng,Wang, Xue-Feng,Zhou, Jian-Hua. 2013

作者其他论文 更多>>