Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China

文献类型: 外文期刊

第一作者: Wan, Yunfan

作者: Wan, Yunfan;Lin, Erda;Xiong, Wei;Li, Yu'e;Guo, Liping;Wan, Yunfan;Lin, Erda;Xiong, Wei;Li, Yu'e;Guo, Liping

作者机构:

关键词: Soil organic carbon;Carbon stock;Climate change;Regional modeling;Cropland soil;Upland soil

期刊名称:AGRICULTURE ECOSYSTEMS & ENVIRONMENT ( 影响因子:5.567; 五年影响因子:6.064 )

ISSN: 0167-8809

年卷期: 2011 年 141 卷 1-2 期

页码:

收录情况: SCI

摘要: Soil organic carbon (SOC) is an important carbon pool which can ameliorate the increasing concentration of atmospheric carbon dioxide as part of the carbon cycling process. Organic carbon in cropland soils is an active pool which is strongly influenced by anthropogenic activities. SOC in cropland soils accounted for 14.5% of the total organic carbon stock of 89.61 Mt C in China. In this study, RothC model was used to simulate the change of SOC in upland soils at 626 original 50 km x 50 km grids under B2 and A2 climate scenarios during the upcoming decades in China. Future climate data under B2 and A2 scenarios were predicted by Providing Regional Climates for Impacts Studies (PRECIS) regional climate model downscaled based on HadCM3. The simulation results showed that SOC will generally decrease during the next decades and the decrease rate of SOC will be higher over time if there is no addition of organic material (e.g. organic manure application or straw return) adopted in China. Simulations got the following results: (i) SOC will decrease in most areas of China, especially in northern China; the increase of SOC only occurred in a few scattered grids in Southwest China and mid-south China. The decrease rate of SOC in northern China was higher than in southern China under either B2 or A2 climate scenarios. (ii) The changing rate of SOC over time under B2 scenario was minor during the early 21st century and quite large during the late 21st century. In contrast, the changing rate of SOC over time under A2 scenario was somewhat constant over time. The percentage decrease (decrease rate divided by its basic value in 1980s) of SOC in northern China was around 5.5%, 12%, and 15% by the year 2020, 2050, and 2080 under B2 and A2 scenarios, while it was about 2.3%, 7.7%, and 10.9% under B2 scenario and 3.3%, 4.5%, and 5.5% under A2 scenario in southern China. (iii) Upland soils would lose organic carbon by 2.7 t C/ha, 6.0 t C/ha, and 7.8 t C/ha at the 0-30 cm depth by the year 2020, 2050, and 2080, respectively, under the typical conventional tillage without organic material amendment under B2 scenario in China, which accounted for about 4.2%, 9.3%, and 12.1%, respectively, of the basic SOC of 1980s in the upland soils. SOC would decrease by 2.9 t C/ha, 6.8 t C/ha, and 8.2 t C/ha by the year 2020, 2050, and 2080, respectively, under A2 scenario in China, which accounted for about 4.5%, 10.5%, and 12.7%, respectively, of that in 1980s under the conventional tillage and management practices. (iv) Our simulations of future change in SOC suggest it is the influence of combination by temperature, precipitation, evaporation, and original soil properties together and that the predominant factors and the interaction among these factors will vary in different geographical regions. The limitations and uncertainties of the simulation are also discussed. (C) 2011 Elsevier B.V. All rights reserved.

分类号:

  • 相关文献

[1]Baseline map of organic carbon stock in farmland topsoil in East China. Deng, Xunfei,Chen, Xiaojia,Ma, Wanzhu,Ren, Zhouqiao,Long, Wenli,Lv, Xiaonan,Deng, Xunfei,Chen, Xiaojia,Ma, Wanzhu,Ren, Zhouqiao,Lv, Xiaonan,Zhang, Minghua,Grieneisen, Michael L.,Ni, Zhihua,Zhan, Yu. 2018

[2]Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: A meta-analysis. Rui, Wenyi,Zhang, Weijian,Zhang, Weijian.

[3]Composition of sulphur pool in selected upland soils in north China. 周卫,林葆,汪洪,李书田,何萍. 1999

[4]Land Use Changes Induced County-Scale Carbon Consequences in Southeast China 1979-2020, Evidence from Fuyang, Zhejiang Province. Qiu, Lefeng,Hu, Wei,Zhu, Jinxia,Wang, Ke. 2016

[5]Large-scale farming operations are win-win for grain production, soil carbon storage and mitigation of greenhouse gases. Zhu, Yongchang,Waqas, Muhammad Ahmed,Li, Yu'e,Wilkes, Andreas,Qin, Xiaobo,Gao, Qingzhu,Wan, Yunfan,Hasbagan, Ganjurjav,Zou, Xiaoxia,Jiang, Defeng. 2018

[6]Variations of carbon stock with forest types in subalpine region of southwestern China. Zhang, Yuandong,Liu, Shirong,Liu, Yanchun,Gu, Fengxue,Li, Chao. 2013

[7]Soil carbon sequestration under long-term rice-based cropping systems of purple soil in Southwest China. Chen Qing-rui,Qin Yu-sheng,Chen Kun,Tu Shi-hua,Xu Ming-gang,Zhang Wen-ju. 2015

[8]Crop yield and soil carbon responses to tillage method changes in North China. Tian, Shenzhong,Ning, Tangyuan,Liu, Zhen,Li, Geng,Li, Zengjia,Tian, Shenzhong,Ning, Tangyuan,Lal, Rattan,Wang, Yu.

[9]Occlusive effect of soil aggregates on increased soil DTPA-extractable zinc under low soil pH caused by long-term fertilization. Guo, Z.,Guo, X.,Wang, J.,Wang, D.,Guo, Z.,Guo, X.,Wang, J.,Wang, D.. 2013

[10]Traditional manual tillage significantly affects soil redistribution and CO2 emission in agricultural plots on the Loess Plateau. Geng, Yan,Yu, Hanqing,Tarafder, Mahbubul,Li, Yong,Tian, Guanglong,Tian, Guanglong,Chappell, Adrian. 2018

[11]Phytolith accumulation in broadleaf and conifer forests of northern China: Implications for phytolith carbon sequestration. Yang, Xiaomin,Song, Zhaoliang,Hao, Qian,Zhang, Xiaodong,Liu, Hongyan,Van Zwieten, Lukas,Song, Alin,Li, Zimin,Wang, Hailong,Wang, Hailong. 2018

[12]Water-Stable Aggregates and Associated Carbon in a Subtropical Rice Soil Under Variable Tillage. Liu, Xi-Hui,Chen, Qiu-Shi,Huang, Yan-Fei,He, Ming-Ju,Xu, Fang-Long,Li, Yang-Rui,Gu, Ming-Hua,Ou, Hui-Ping,Liu, Xi-Hui,Huang, Yan-Fei,Tan, Hong-Wei,Li, Yang-Rui. 2016

[13]Spatiotemporal variation of soil organic carbon in the cultivated soil layer of dry land in the South-Western Yunnan Plateau, China. Zhao, Ji-xia,Liu, Gang-cai,Zhao, Ji-xia,Dai, Fu-qiang,He, Shou-jia,Zhang, Qing. 2017

[14]Modeling the effects of farming management practices on soil organic carbon stock at a county-regional scale. Deng, Nanrong,Wang, Qi,Wang, Jing,Lv, Changhe,Yu, Haibin,Li, Wangjun,Chen, Zhao. 2018

[15]Characteristics of differently stabilised soil organic carbon fractions in relation to long-term fertilisation in Brown Earth of Northeast China. Xu, Xiangru,An, Tingting,Pei, Jiubo,Wang, Jingkuan,Xu, Xiangru,Zhang, Wenju,Xu, Minggang,Xiao, Jing,Xie, Hongtu. 2016

[16]Effects of Long-Term Organic Amendments on Soil Organic Carbon in a Paddy Field: A Case Study on Red Soil. Huang Qing-hai,Li Da-ming,Liu Kai-lou,Yu Xi-chu,Ye Hui-cai,Hu Hui-wen,Xu Xiao-lin,Wang Sai-lian,Zhou Li-jun,Duan Ying-hua,Zhang Wen-ju. 2014

[17]Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: II nutrient balances and soil fertility. Wang, Xiaobin,Hoogmoed, Willem B.,Cai, Dianxiong,Perdok, Udo D.,Oenema, Oene. 2007

[18]Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Li Hui,Feng Wen-ting,Sun Nan,Xu Ming-gang,Li Hui,Feng Wen-ting,He Xin-hua,Zhu Ping,Gao Hong-jun. 2017

[19]Modeling Soil Organic Carbon Storage and Its Dynamics in Croplands of China. Tang Hua-jun,Qiu Jian-jun,Wang Li-gang,Li Hu,Li Chang-sheng,van Ranst, Eric. 2010

[20]Modeling the Impacts of Soil Organic Carbon Content of Croplands on Crop Yields in China. Qiu Jian-jun,Wang Li-gang,Li Hu,Tang Hua-jun,Li Chang-sheng,Van Ranst, Eric. 2009

作者其他论文 更多>>