Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat

文献类型: 外文期刊

第一作者: Zhang, Zheng-Bin

作者: Zhang, Zheng-Bin;Xu, Ping;Jia, Ji-Zeng;Zhou, Rong-Hua

作者机构:

关键词: QTLs;Leaf Chlorophyll Fluorescence Trait;Wheat

期刊名称:AUSTRALIAN JOURNAL OF CROP SCIENCE ( 影响因子:1.632; 五年影响因子:1.686 )

ISSN: 1835-2693

年卷期: 2010 年 4 卷 8 期

页码:

收录情况: SCI

摘要: Chlorophyll fluorescence is closely related to photosystem II (PS II), and chlorophyll fluorescence analysis has become one of the most powerful and widely used techniques that are available to plant physiologists and ecophysiologists. In this article we report the genetic study of leaf chlorophyll fluorescence traits in wheat. 114 wheat recombinant inbred lines (RILs) derived from W-7984xOpata85 were used as samples and QTLs of chlorophyll relative content (C), minimum fluorescence yield of PS II (F-o), maximum fluorescence yield of PS II (F-m), variable chlorophyll fluorescence yield (F-v), maximum quantum yield of PS II (F-v /F-m), and time of achieving maximum fluorescence yield (T-m) were obtained and analyzed. Five QTLs associated with C are detected on 4B, 4D, 6D and 7A, and the relative additive contribution of locus C6D and C7A is 15.60% and 11.04%, respectively; two pairs of interaction loci affecting C are found. Three QTLs are identified for F-o on 1A, 1B and 1D. One QTL for F-v is mapped on 7D, and it is found that five pairs of interaction QTLs influencing F-v. One loci significantly influencing F-m is on chromosome 5A, which acts as a major effect gene and can explain 20.69% of total phenotypic variation for F-m, and closely links with the RFLP marker Xcdo749. There are six QTLs controlling T-m mapped on 2D, 3D, 4A, 4D, 5D and 7D; one pair of interaction QTLs influencing T-m exists. Three pairs of interaction QTLs influence F-v/F-m, showing a general epistatic contribution of 94.62%. The identified QTL markers for chlorophyll fluorescence traits will be useful for understanding the genetics background and marker-assisted selection in wheat photosynthetic traits improving.

分类号:

  • 相关文献

[1]Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. Liang, Qingzhi,Li, Pengbo,Hu, Cheng,Hua, Hua,Li, Zhaohu,Hua, Jinping,Rong, Yihua,Wang, Kunbo.

[2]Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in Upland cotton (Gossypium hirsutum L.). Shang, Lianguang,Liang, Qingzhi,Wang, Xiaocui,Abduweli, Abdugheni,Ma, Lingling,Cai, Shihu,Hua, Jinping,Wang, Yumei,Wang, Kunbo.

[3]Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mulugeta Seyoum Ademe,Du, Xiongming,Jia, Yinhua,Shoupu He,Zhaoe Pan,Junling Sun,Qinglian Wang,Hongde Qin,Jinhai Liu,Hui Liu,Jun Yang,Dongyong Xu,Jinlong Yang,Zhiying Ma,Jinbiao Zhang,Zhikun Li,Zhongmin Cai,Xuelin Zhang,Xin Zhang,Aifen Huang,Xianda Yi,Guanyin Zhou,Lin Li,Haiyong Zhu,Baoyin Pang,Liru Wang,Yinhua Jia,Xiongming Du.

[4]Molecular dissection of the primary sink size and its related traits in rice. Xu, JL,Yu, SB,Luo, LJ,Zhong, DB,Mei, HW,Li, ZK. 2004

[5]Fine mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton. Kumar, Pawan,He, Yajun,Singh, Rippy,Shen, Xinlian,Chee, Peng W.,Davis, Richard F.,Guo, Hui,Paterson, Andrew H.,Peterson, Daniel G.,Nichols, Robert L.,Shen, Xinlian,He, Yajun. 2016

[6]Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Wu, Xun,Li, Yongxiang,Shi, Yunsu,Song, Yanchun,Zhang, Dengfeng,Li, Chunhui,Li, Yu,Wang, Tianyu,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu,Wu, Xun,Zhang, Zhiwu.

[7]Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Li, ZK,Fu, BY,Gao, YM,Xu, JL,Ali, J,Lafitte, HR,Jiang, YZ,Rey, JD,Vijayakumar, CHM,Maghirang, R,Zheng, TQ,Zhu, LH.

[8]Identification of quantitative trait loci associated with soybean seed protein content using two populations derived from crosses between Glycine max and Glycine soja. Yan, Long,Xing, Li-Li,Chang, Ru-Zhen,Qiu, Li-Juan,Yan, Long,Yang, Chun-Yan,Zhang, Meng-Chen.

[9]Genome-wide assessment of population structure, linkage disequilibrium and resistant QTLs in Chinese wild grapevine. Zhang, Ying,Fan, Xiucai,Jiang, Jianfu,Sun, Haisheng,Liu, Chonghuai,Feng, Li,Zheng, Xian-bo.

[10]Quantitative trait loci for the number of vertebrae on Sus scrofa chromosomes 1 and 7 independently influence the numbers of thoracic and lumbar vertebrae in pigs. Zhang Long-chao,Liu Xin,Liang Jing,Yan Hua,Zhao Ke-bin,Li Na,Pu Lei,Shi Hui-bi,Zhang Yue-bo,Wang Li-gang,Wang Li-xian. 2015

[11]High-density genetic map construction and QTLs analysis of grain yield-related traits in Sesame (Sesamum indicum L.) based on RAD-Seq techonology. Wu, Kun,Liu, Hongyan,Yang, Minmin,Wu, Wenxiong,Zuo, Yang,Zhao, Yingzhong,Tao, Ye,Ma, Huihui. 2014

[12]Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.). Ren, Deyong,Rao, Yuchun,Huang, Lichao,Leng, Yujia,Hu, Jiang,Zhang, Guangheng,Zhu, Li,Gao, Zhenyu,Dong, Guojun,Guo, Longbiao,Qian, Qian,Zeng, Dali,Rao, Yuchun,Lu, Mei. 2016

[13]Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.). Dong, YJ,Ogawa, T,Lin, DZ,Koh, HJ,Kamiunten, H,Matsuo, M,Cheng, SH. 2006

[14]Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.). Qian, Y. L.,Guo, J.,Wang, J.,Qi, Y. C.,Li, T. C.,Zhang, W.,Ruan, L.,Zuo, X. L.,Zhang, X. Q.,Wang, L. F.,Chen, J.,Chen, B. R.,Lv, G. H.,Wu, Z. C.. 2016

[15]Breeding of a target genotype variety based on identified chalkiness marker-QTL associations in rice (Oryza sativa L.). Liu, X.,Du, Y. R.,Li, X. H.,Yang, W. Q.,Liu, X.,Wang, Y.,Liu, X.,Li, X. L.. 2015

[16]Characterization of Genetic Basis on Synergistic Interactions between Root Architecture and Biological Nitrogen Fixation in Soybean. Yang, Yongqing,Yang, Yongqing,Li, Xinxin,Ai, Wenqin,Liu, Dong,Qi, Wandong,Liao, Hong,Zhao, Qingsong,Zhang, Mengchen,Yang, Chunyan,Ai, Wenqin,Liu, Dong,Qi, Wandong. 2017

[17]Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids. Shang, Lianguang,Cai, Shihu,Wang, Xiaocui,Li, Yuhua,Abduweli, Abdugheni,Hua, Jinping,Wang, Yumei. 2016

[18]Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Wang, Hailian,Chen, Guiling,Zhang, Huawen,Liu, Bin,Yang, Yanbing,Qin, Ling,Chen, Erying,Guan, Yanan.

[19]Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). An, Diaoguo,Su, Junying,Liu, Quanyou,Zhu, Yongguan,Tong, Yiping,Li, Junming,Jing, Ruilian,Li, Bin,Li, Zhensheng. 2006

[20]RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L). Lin, HX,Qian, HR,Zhuang, JY,Lu, J,Min, SK,Xiong, ZM,Huang, N,Zheng, KL. 1996

作者其他论文 更多>>