The Mining of Citrus EST-SNP and Its Application in Cultivar Discrimination

文献类型: 外文期刊

第一作者: Jiang Dong

作者: Jiang Dong;Ye Qing-liang;Wang Fu-sheng;Cao Li

作者机构:

关键词: citrus;single nucleotide polymorphisms (SNPs);EST-SNP;cleaved amplified polymorphic sequences (CAPS)

期刊名称:AGRICULTURAL SCIENCES IN CHINA ( 影响因子:0.82; 五年影响因子:0.997 )

ISSN: 1671-2927

年卷期: 2010 年 9 卷 2 期

页码:

收录情况: SCI

摘要: Single nucleotide polymorphisms (SNPs) are the most abundant sequence variations found in plant genomes and are widely used as molecular genetic markers in cultivar identification and genetic diversity studies. The objective of this study was to identify SNP markers useful for discrimination of citrus cultivars, since large numbers of expressed sequence tags (ESTs) of sweet orange are available from the National Center for Biotechnology Information (NCBI). We now have the opportunity to discover SNP markers suitable for determining the haplotypes with which to distinguish very closely related cultivars and to assess genetic diversity within or between related species of citrus. SNPs and small insertions/deletions (Indels) from ESTs of sweet orange and satsuma were identified by the in silica SNP discovery strategy. 55 296 EST sequences of sweet orange and 2 575 of satsuma retrieved from the NCBI repository were mined for potential SNPs. Cleaved amplified polymorphic sequences (CAPS) and sequencing approaches were used to validate putative SNPs in a sample of 30 citrus accessions. A total of 3 348 putative SNPs were identified based on the abundance of sequences and haplotype cosegregation. Of these 3 348 SNPs, the transitions, transversions and Indels ratios were 47.9, 36.1 and 16.0%, respectively. The SNPs occurred on average at a frequency of 1 per 164 bp in the coding region of citrus. 14 SNPs were randomly selected and genotyped according to 30 citrus accessions including 23 accessions of sweet orange; 11 SNPs displayed polymorphism with an average polymorphism information content (PIC) of 0.20 among 30 citrus accessions. The genetic diversity present in sweet orange was low, so the 14 SNP markers failed to discriminate different cultivars of sweet orange, but they did succeed in distinguishing accessions of inter-species of citrus. In this study, SNPs were mined from EST sequences of sweet orange and satsuma, which displayed potential capability as molecular markers to discriminate inter-species accessions of citrus. It is anticipated that these putative SNPs could be applied in citrus genetics research and breeding.

分类号:

  • 相关文献

[1]Genetic variation of Pit-1 gene in Chinese indigenous and Western goose populations. Cheng, Jin-hua,Qiao, Na,Zhao, Wen-ming,Xu, Qi,Zhang, Hai-bo,Duan, Xiu-jun,Chen, Guo-hong,Ji, Wen-lin,Cheng, Jin-hua. 2009

[2]Development of SNP-based dCAPS markers linked to major head smut resistance quantitative trait locus qHS2.09 in maize. Di, Hong,Liu, Xianjun,Wang, Qiankun,Zhang, Lin,Wang, Zhenhua,Weng, Jianfeng,Li, Xinhai.

[3]Development and characterization of 32 SNP markers for the northern snakehead (Channa argus) using high resolution melting (HRM). Zhang, Bo-Chi,Zhang, Gui-Rong,Ji, Wei,Yang, Rui-Bin,Wei, Kai-Jian,Gardner, Jonathan P. A.,Zhang, Bo-Chi,Zhang, Gui-Rong,Ji, Wei,Yang, Rui-Bin,Wei, Kai-Jian,Gardner, Jonathan P. A.,Zou, Gui-Wei,Chen, Kun-Ci,Gardner, Jonathan P. A.. 2017

[4]Expression analysis, single nucleotide polymorphisms within SIRT4 and SIRT7 genes and their association with body size and meat quality traits in Qinchuan cattle. Gui Lin-sheng,Wang Jia-li,Hong Jie-yun,Zan Lin-sen,Xin Xiao-ling. 2016

[5]Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives. Rasheed, Awais,Hao, Yuanfeng,Xia, Xianchun,Xu, Yunbi,He, Zhonghu,Rasheed, Awais,Xu, Yunbi,He, Zhonghu,Khan, Awais,Varshney, Rajeev K.. 2017

[6]Overview of genomic insights into chicken growth traits based on genome-wide association study and microRNA regulation. Zhang, Xiquan.

[7]Mycorrhizal and Non-mycorrhizal Responses to Salt Stress in Trifoliate Orange: Plant Growth, Root Architecture and Soluble Sugar Accumulation. Zou, Ying-Ning,Wu, Qiang-Sheng,Liang, Yong-Chao,Wu, Qiang-Sheng. 2013

[8]Physiological Effects and Fluorescence Labeling of Magnetic Iron Oxide Nanoparticles on Citrus (Citrus reticulata) Seedlings. Li, Junli,Hu, Jing,Xiao, Lian,Gan, Qiuliang,Li, Junli,Wang, Yunqiang. 2017

[9]Genetic stability assessments of plantlets regenerated from cryopreserved in vitro cultured grape and kiwi shoot-tips using RAPD. Zhai, ZY,Wu, YJ,Engelmann, F,Chen, RZ,Zhao, YH. 2003

[10]Mycorrhizal symbiosis enhances tolerance to NaCl stress through selective absorption but not selective transport of K+ over Na+ in trifoliate orange. Wu, Qiang-Sheng,Zou, Ying-Ning,He, Xin-Hua,He, Xin-Hua. 2013

[11]Small RNA deep sequencing reveals full-length genome of Citrus yellow vein clearing virus in Chongqing, China. Yu Yun-qi,Wu Qiong,Yu Yun-qi,Wu Qiong,Wang Xue-feng,Cao Meng-ji,Zhou Chang-yong,Su Hua-nan. 2017

[12]Cryopreservation of Citrus anthers in the National Crop Genebank of China. Zhang, Jin-Mei,Lu, Xin-Xiong,Xin, Xia,Yin, Guang-Kun,He, Juan-Juan,Huang, Bin,Chen, Xiao-Ling,Huang, Bin,Jiang, Dong. 2017

[13]A new diagnostic system for ultra-sensitive and specific detection and quantification of Candidatus Liberibacter asiaticus, the bacterium associated with citrus Huanglongbing. Chen, Chuanwu,Zhao, Xiaolong,Doddapaneni, Harshavardhan,Duan, Yongping,Bai, Xianjin. 2010

[14]Genomic characterization of miR156 and SQUAMOSA promoter binding protein-like genes in sweet orange (Citrus sinensis). Liu, Mei-Ya,Wu, Xiao-Meng,Long, Jian-Mei,Guo, Wen-Wu,Liu, Mei-Ya.

[15]Identification of microRNAs correlated with citrus granulation based on bioinformatics and molecular biology analysis. Zhang, Jing,Wang, Miao,Dai, Chao,Sun, Yufeng,Lu, Jia,Huang, Yatao,Li, Minmin,He, Yan,Wang, Fengzhong,Fan, Bei,Zhang, Jing,Wang, Miao,Dai, Chao,Sun, Yufeng,Lu, Jia,Huang, Yatao,Li, Minmin,He, Yan,Wang, Fengzhong,Fan, Bei,Cheng, Fansheng.

[16]Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection. Zou, Xiuping,Peng, Aihong,Xu, Lanzhen,Liu, Xiaofeng,Lei, Tiangang,Yao, Lixiao,He, Yongrui,Chen, Shanchun,Zou, Xiuping,Peng, Aihong,Xu, Lanzhen,Liu, Xiaofeng,Lei, Tiangang,Yao, Lixiao,He, Yongrui,Chen, Shanchun. 2013

[17]Obtaining citrus hybrids by in vitro culture of embryos from mature seeds and early identification of hybrid seedlings by allele-specific PCR. Zhu, Shiping,Zhong, Guangyan,Wu, Bo,Ma, Yanyan,Chen, Jiao,Zhong, Guangyan. 2013

[18]Behaviour of spirotetramat residues and its four metabolites in citrus marmalade during home processing. Liu, Yanyu,Chen, Weijun,Sun, Dali,Gong, Lei,Jiang, Liyan,Jiao, Bining,Liu, Yanyu,Chen, Weijun,Sun, Dali,Gong, Lei,Jiang, Liyan,Jiao, Bining,Su, Xuesu,Jian, Qiu,Chen, Weijun,Jiao, Bining,Jiao, Bining.

[19]The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A. Xie, Rangjin,Pang, Shaoping,Ma, Yanyan,Deng, Lie,He, Shaolan,Yi, Shilai,Lv, Qiang,Zheng, Yongqiang.

[20]A deep-coverage BAC library for Ponkan mandarin and its further use in screening ethylene regulated genes. Wang, Miao,Tan, AnQun,Zhang, LingYun,Yang, JiaWei,Wei, ZhaoXin,Cheng, ChunZhen,Zhong, GuangYan,Zhou, ZhiQin,Zhong, GuangYan,Wang, Miao,Zhang, LingYun,Yang, JiaWei,Wei, ZhaoXin,Cheng, ChunZhen,Zhou, ZhiQin. 2010

作者其他论文 更多>>