Adsorption of aqueous Cd2+, Pb2+, Cu2+ ions by nano-hydroxyapatite: Single- and multi-metal competitive adsorption study

文献类型: 外文期刊

第一作者: Chen, S. B.

作者: Chen, S. B.;Ma, Y. B.;Chen, S. B.;Chen, L.;Xian, K.

作者机构:

关键词: nano-hydroxyapatite (nano-HAP);Cd;Pb;Cu;competitive adsorption;selectivity coefficients

期刊名称:GEOCHEMICAL JOURNAL ( 影响因子:1.561; 五年影响因子:1.58 )

ISSN: 0016-7002

年卷期: 2010 年 44 卷 3 期

页码:

收录情况: SCI

摘要: Being an inexpensive but efficient adsorbent, hydroxyapatite is extensively used for decontaminating wastewater and soils polluted by heavy metals. However, its solubility and grain size can affect its remediation effectiveness. This study investigated the ability of nano-hydroxyapatite (nano-HAP) to adsorb aqueous Cd, Pb and Cu ions from single-metal and multi-metal ions reaction systems. Langmuir and Freundlich isotherm equations were employed to study the sorption constants. Based on the sum of squares errors (SSE), results showed that the Langmuir isotherm better fits sorption data than the Freundlich equation. The sorption affinity of nano-HAP for Pb(II) is always higher than that for Cu(II) and for Cd(II); the sorption maxima for the Cd, Pb and Cu follow the order Pb2+ > Cu2+ > Cd2+. This could be inversely proportional to the hydrated ionic radii as Pb2+ (4.01 angstrom) > Cu2+ (4.19 angstrom) > Cd2+ (4.26 angstrom). The measured selectivity coefficients in multi-metal (Cd-Pb-Cu) reaction systems shows that Pb has the highest sorption selectivity on nano-HAP among the metals investigated. This sorption selectivity coincided well with the sorption affinity order in mono-metal reaction systems. The pH of the solution is an important parameter in controlling Cd, Pb and Cu ions sorption on nano-HAP. Indeed, the nano-HAP sorption capacity increases with increasing pH up to a value of 6.25. This implies that the removal of metals from the solution is recommended for pH 6.25 or below, during remediation using nano-HAP as a sorbent.

分类号:

  • 相关文献

[1]Removal of Cd, Pb and Cu from Water Using Thiol and Humic Acid Functionalized Fe2O3 Nanoparticles. Wang Meng,Chen Shibao. 2012

[2]Direct determination of Cu and Pb in edible L-lysine by graphite furnace atomic absorption spectrometry. Shan, F,Bian, JS. 2002

[3]Direct determination of Cu, Mn and Pb in wine and drink by GFAAS. Bian, JS,Shan, F,Li, YQ. 2000

[4]PHYTOEXTRACTION OF PB AND CU CONTAMINATED SOIL WITH MAIZE AND MICROENCAPSULATED EDTA. Xie, Zhiyi,Chen, Nengchang,Liu, Chengshuai,Zheng, Yuji,Xu, Shengguang,Li, Fangbai,Xu, Yanling,Xie, Zhiyi,Xie, Zhiyi,Wu, Longhua. 2012

[5]Tolerance and Removal Mechanisms of Heavy Metals by Fungus Pleurotus ostreatus HAAS. Yang, Suqin,Sun, Xiaoxue,Yang, Suqin,Li, Xuanzhen,Shen, Yanping,Chang, Cheng,Guo, Erhui,Zhao, Yong,Li, Xuanzhen,La, Guixiao.

[6]The Determination of Total N, Total P, Cu and Zn in Chicken Manure Using Near Infrared Reflectance Spectroscopy. Dong, Yiwei,Li, Yuzhong,Wang, Yanan,Li, Qiaozhen,Chen, Yongxing,Xu, Chunying,Bai, Wei,Dong, Yiwei,Zhu, Dazhou. 2011

[7]Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Zhu, YG,Chen, SB,Yang, JC. 2004

[8]Pb uptake and tolerance in the two selected mangroves with different root lignification and suberization. Cheng, Hao,Wang, You-Shao,Wu, Mei-Lin,Sun, Cui-Ci,Cheng, Hao,Wang, You-Shao,Wu, Mei-Lin,Sun, Cui-Ci,Liu, Yong,Ye, Zhi-Hong.

[9]Methodology Improvement in Background Elimination in Plant Cd Measurement by Graphite Furnace Atom Absorption. Feng Wen-qiang,Qin Yu-sheng,Chen Qing-rui,Zeng Xiang-zhong,Tu Shi-hua. 2009

[10]Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Liu, Yunguo,Wang, Xin,Zeng, Guangming,Qu, Dan,Gu, Jiajia,Zhou, Ming,Chal, Liyuan. 2007

[11]Tissue-specific accumulation of cadmium and its effects on antioxidative responses in Japanese flounder juveniles. Cao, Liang,Huang, Wei,Shan, Xiujuan,Dou, Shuozeng,Huang, Wei,Shan, Xiujuan,Ye, Zhenjiang.

[12]Thermal Effects on the Stability and Antioxidant Activity of an Acid Polysaccharide Conjugate Derived from Green Tea. Chen, Xiaoqiang,Ye, Yang,Cheng, Hao,Jiang, Yongwen,Wu, Yalin.

[13]Trace Elements and Heavy Metals in Asian Rice-Derived Food Products. Guo, Kai,Wells, Shenita,Han, Fengxiang X.,Arslan, Zikri,Sun, Hua,Zhang, Jiuquan.

[14]The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties. Ye, Xinxin,Wu, Liang,Sun, Bo,Ye, Xinxin,Li, Hongying,Ma, Yibing,Wu, Liang. 2014

[15]Coupling biological assays with diffusive gradients in thin-films technique to study the biological responses of Eisenia fetida to cadmium in soil. Gu, Xueyuan,Liu, Zhimin,Wang, Xiaorong,Luo, Jun,Ma, Lena Q.,Xue, Yingang,Liu, Zhimin,Zhang, Hao,Davison, William,Ma, Lena Q.,Xue, Yingang. 2017

[16]Cd accumulation and subcellular distribution in two ecotypes of Kyllinga brevifolia Rottb as affected by Cd treatments. Hao, Xiaoqing,Li, Tingxuan,Yu, Haiying,Zhang, Xizhou,Zheng, Zicheng,Chen, Guangdeng,Zhang, Shujin,Zhao, Li,Pu, Yong,Hao, Xiaoqing,Zhang, Shujin,Pu, Yong.

[17]Iron nutrition affects cadmium accumulation and toxicity in rice plants. Shao, Guosheng,Chen, Mingxue,Wang, Weixia,Mon, Renxiang,Zhang, Guoping.

[18]Amending the seedling bed of eggplant with biochar can further immobilize Cd in contaminated soils. Li, Zhongyang,Qi, Xuebin,Fan, Xiangyang,Du, Zhenjie,Hu, Chao,Zhao, Zhijuan,Liu, Yuan,Li, Zhongyang,Qi, Xuebin,Fan, Xiangyang,Du, Zhenjie,Hu, Chao,Zhao, Zhijuan,Liu, Yuan,Isa, Yunusa. 2016

[19]Comparison of Soybean Cultivars Enriching Cd and the Application Foreground of the Low-Accumulating Cultivar in Production. Wang, Siqi,Wei, Shuhe,Wang, Siqi,Chen, Yanqiu,Ljupco, Mihajlov. 2017

[20]In Situ Field-Scale Remediation of Low Cd-Contaminated Paddy Soil Using Soil Amendments. Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun,Li, Lin-feng,Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun,Li, Lin-feng,Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun.

作者其他论文 更多>>