Phenolic Composition and Antioxidant Activities of 11 Celery Cultivars

文献类型: 外文期刊

第一作者: Yao, Yang

作者: Yao, Yang;Sang, Wei;Ren, Guixing;Zhou, Mengjie

作者机构:

关键词: antioxidant capabilities;celery;flavonoids;phenolic acids

期刊名称:JOURNAL OF FOOD SCIENCE ( 影响因子:3.167; 五年影响因子:3.376 )

ISSN: 0022-1147

年卷期: 2010 年 75 卷 1 期

页码:

收录情况: SCI

摘要: Eleven cultivars of celery, belonging to 2 species, were collected and analyzed for their phenolic compound composition and antioxidant activities. Major phenolic acids identified in the extracts of these celeries were caffeic acid, p-coumaric acid, and ferulic acid, while the identified flavonoids ere apigenin, luteolin, and kaempferol. The contents of total phenolics were measured using a Folin Ciocalteu assay and the total antioxidant capacity was estimated by the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS.(+)) methods. Apigenin was the major flavonoid in these samples and the most abundant phenolic acid was p-coumaric acid. Many of the investigated cultivars had high levels of phenolics and exhibited high antioxidant capacity. Among these II cultivars Shengjie celery had the highest antioxidant activity whereas Tropica had the lowest. An extremely significant positive correlation between the antioxidant activity and the contents of total flavonoids, total-phenolic acids, or total phenolics was observed in this study.

分类号:

  • 相关文献

[1]Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. Yao, Yang,Ren, Guixing. 2011

[2]Complex enzyme hydrolysis releases antioxidative phenolics from rice bran. Liu, Lei,Wen, Wei,Zhang, Ruifen,Wei, Zhencheng,Deng, Yuanyuan,Xiao, Juan,Zhang, Mingwei. 2017

[3]Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China. Ti, Huihui,Li, Qing,Zhang, Ruifen,Zhang, Mingwei,Deng, Yuanyuan,Wei, Zhencheng,Chi, Jianwei,Zhang, Yan.

[4]Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice. Liu, Lei,Guo, Jinjie,Zhang, Ruifen,Wei, Zhencheng,Deng, Yuanyuan,Guo, Jinxin,Zhang, Mingwei.

[5]Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity. Ti, Huihui,Zhang, Ruifen,Li, Qing,Wei, Zhencheng,Zhang, Mingwei.

[6]Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with alpha-amylase. Liu, Lei,Zhang, Ruifen,Deng, Yuanyuan,Zhang, Yan,Xiao, Juan,Huang, Fei,Wen, Wei,Zhang, Mingwei.

[7]Cadmium Accumulation in soil and Celery from a Long-Term Manure Applied Field Experiment. Sun, Qinping,Li, Jijin,Liu, Bensheng,Gao, Lijuan,Xu, Junxiang,Zou, Guoyuan,Liu, Baocun. 2013

[8]Risk assessment of pesticide residues in dietary intake of celery in China. Fang, Liping,Zhang, Shuqiu,Chen, Zilei,Du, Hongxia,Zhu, Qian,Dong, Zhan,Li, Huidong,Fang, Liping,Zhang, Shuqiu,Chen, Zilei,Du, Hongxia,Zhu, Qian,Dong, Zhan,Li, Huidong. 2015

[9]The influence of coated urea on yield and quality of vegetable crops and nitrogen balance in calcareous Chao soil. Xiong, Yousheng,Yuan, Jiafu,Hu, Ronggui. 2010

[10]Apigenin accumulation and expression analysis of apigenin biosynthesis relative genes in celery. Yan, Jun,Yu, Li,Xu, Shuang,Gu, Weihong,Zhu, Weimin. 2014

[11]Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography-Mass Spectrometry for the Determination of Multiple Pesticides in Celery. Wei, Haifeng,Liu, Deyun,Xia, Gaofeng,Yang, Xiaoyun,Miao, Xuexue.

[12]HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Yao, LH,Jiang, YM,Datta, N,Singanusong, R,Liu, X,Duan, J,Raymont, K,Lisle, A,Xu, Y. 2004

[13]Chemical constituents from Orobanche cernua Loefling. Qu, Zheng-yi,Zhang, Yu-wei,Yao, Chun-lin,Jin, Yin-ping,Zheng, Pei-he,Sun, Cheng-he,Liu, Jun-xia,Wang, Yu-shuai,Wang, Ying-ping.

[14]Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Shao, Yafang,Hu, Zhanqiang,Yu, Yonghong,Mou, Renxiang,Zhu, Zhiwei,Beta, Trust. 2018

[15]The interaction of phenolic acids with Fe(III) in the presence of citrate as studied by isothermal titration calorimetry. Yang, Senpei,Bai, Guangling,Chen, Lingli,Shen, Qun,Zhao, Guanghua,Diao, Xianmin. 2014

[16]Flavonoids, phenolic acids, alkaloids and theanine in different types of authentic Chinese white tea samples. Tan, Junfeng,Lin, Zhi,Tan, Junfeng,Engelhardt, Ulrich H.,Kaiser, Nils,Maiwald, Beate.

[17]Isolation and Purification of Phenolic Acids from Sugarcane (Saccharum officinarum L.) Rinds by pH-Zone-Refining Counter-Current Chromatography and Their Antioxidant Activity Evaluation. Li, Quan,Wei, Yun,Cao, Ao-Cheng,Li, Yuan.

[18]Effects of Domestic Cooking Methods on Polyphenols and Antioxidant Activity of Sweet Potato Leaves. Mu, Taihua.

[19]Phenolic acids alleviate high-fat and high-fructose diet-induced metabolic disorders in rats. Guo, Xiaoxuan,Ji, Baoping,Zhou, Feng,Wang, Ou,Wang, Yong,Wang, Kai.

[20]Research on the relationship between phenolic acids and rooting of tree peony (Paeonia suffruticosa) plantlets in vitro. Shang, Wenqian,Wang, Zheng,He, Songlin,He, Dan,Liu, Yiping,He, Songlin,Fu, Zhenzhu.

作者其他论文 更多>>