Identification of two Lynx proteins in Nilaparvata lugens and the modulation on insect nicotinic acetylcholine receptors

文献类型: 外文期刊

第一作者: Li, Jian

作者: Li, Jian;Bao, Haibo;Cao, Guangchun;Zhang, Yongjun

作者机构:

关键词: neonicotinoids resistance;nicotinic acetylcholine receptor modulator;nicotinic acetylcholine receptors;Nilaparvata lugens

期刊名称:JOURNAL OF NEUROCHEMISTRY ( 影响因子:5.372; 五年影响因子:5.69 )

ISSN: 0022-3042

年卷期: 2009 年 110 卷 5 期

页码:

收录情况: SCI

摘要: Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission in the insect brain and are targets for neonicotinoid insecticides. Some proteins, other than nAChRs themselves, might play important roles in insect nAChRs function in vivo and in vitro, such as the chaperone, regulator and modulator. Here we report the identification of two nAChR modulators (Nl-lynx1 and Nl-lynx2) in the brown planthopper, Nilaparvata lugens. Analysis of amino acid sequences of Nl-lynx1 and Nl-lynx2 reveals that they are two members of the Ly-6/neurotoxin superfamily, with a cysteine-rich consensus signature motif. Nl-lynx1 and Nl-lynx2 only increased agonist-evoked macroscopic currents of hybrid receptors Nl alpha 1/beta 2 expressed in Xenopus oocytes, but not change the agonist sensitivity and desensitization properties. For example, Nl-lynx1 increased I(max) of acetylcholine and imidacloprid to 3.56-fold and 1.72-fold of that of Nl alpha 1/beta 2 alone, and these folds for Nl-lynx2 were 3.25 and 1.51. When the previously identified Nl alpha 1(Y151S) mutation was included (Nl alpha 1(Y151S/beta 2)), the effects of Nl-lynx1 and Nl-lynx2 on imidacloprid responses, but not acetylcholine response, were different from that in Nl alpha 1/beta 2. The increased folds in imidacloprid responses by Nl-lynx1 and Nl-lynx2 were much higher in Nl alpha 1(Y151S/beta 2) (3.25-fold and 2.86-fold) than in Nl alpha 1/beta 2 (1.72-fold and 1.51-fold), which indicated Nl-lynx1 and Nl-lynx2 might also serve as an influencing factor in target-site insensitivity in N. lugens. These findings indicate that nAChRs chaperone, regulator and modulator may be of importance in assessing the likely impact of the target-site mutations such as Y151S upon neonicotinoid insecticide resistance.

分类号:

  • 相关文献

[1]Two distinctive beta subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis. Bao, Haibo,Liu, Yang,Zhang, Yixi,Liu, Zewen,Bao, Haibo. 2017

[2]Selective actions of Lynx proteins on different nicotinic acetylcholine receptors in the locust, Locusta migratoria manilensis. Wang, Xin,Bao, Haibo,Sun, Huahua,Zhang, Yixi,Liu, Qinghong,Liu, Zewen,Bao, Haibo,Fang, Jichao.

[3]IPPA08 allosterically enhances the action of imidacloprid on nicotinic acetylcholine receptors. Bao, Haibo,Fang, Jichao,Bao, Haibo,Zhang, Yixi,Wang, Yunchao,Liu, Zewen,Shao, Xusheng,Zhang, Yixi,Cheng, Jiagao,Xu, Xiaoyong,Li, Zhong.

[4]Effects of elevated CO2 on the nutrient compositions and enzymes activities of Nilaparvata lugens nymphs fed on rice plants. Wu Gang,Zhuang Jing,Zhao WanYun,Hua HongXia,Huang WenKun,Su Li,Li JunSheng,Xiao NengWen,Xiong YanFei. 2012

[5]Research priorities for rice pest management in tropical asia: A simulation analysis of yield losses and management efficiencies. Willocquet, L,Elazegui, FA,Castilla, N,Fernandez, L,Fischer, KS,Peng, SB,Teng, PS,Srivastava, RK,Singh, HM,Zhu, DF,Savary, S. 2004

[6]Comparison of the effects of brown planthopper, Nilaparvata lugens (Stal) (Homoptera : Delphacidae), and rice leaffolder, Cnaphalocrocis medinalis Guenee (Lepidoptera : Pyralidae), infestations and simulated damage on nutrient uptake by the roots of rice plants. Yin, JL,Wu, JC,Yu, YS,Liu, JL,Xie, M,Wan, FH. 2005

[7]A Genome-Wide Identification and Analysis of the Basic Helix-Loop-Helix Transcription Factors in Brown Planthopper, Nilaparvata lugens. Wan, Pin-Jun,Yuan, San-Yue,Wang, Wei-Xia,Chen, Xu,Lai, Feng-Xiang,Fu, Qiang. 2016

[8]Influence of rice black streaked dwarf virus on the ecological fitness of non-vector planthopper Nilaparvata lugens (Hemiptera: Delphacidae). Xu, Hong-Xing,Zheng, Xu-Song,Yang, Ya-Jun,Lu, Zhong-Xian,He, Xiao-Chan. 2014

[9]Efficient RNA interference for three neuronally-expressed genes in Nilaparvata lugens (Stal) (Hemiptera: Delphacidae). Xu, Chen,Guo-Qing, Li,Xu, Chen,Pin-Jun, Wan,Qiang, Fu. 2017

[10]Glycogen Phosphorylase and Glycogen Synthase: Gene Cloning and Expression Analysis Reveal Their Role in Trehalose Metabolism in the Brown Planthopper, Nilaparvata lugens St(a)over-circlel (Hemiptera: Delphacidae). Zhang, Lu,Wang, Huijuan,Chen, Jianyi,Shen, Qida,Wang, Shigui,Tang, Bin,Xu, Hongxing. 2017

[11]Characterization of putative soluble and membrane-bound trehalases in a hemipteran insect, Nilaparvata lugens. Gu, Jianhua,Shao, Ying,Liu, Zewen,Zhang, Chengwei,Zhang, Yongjun.

[12]Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Ding, Zhiping,Liu, Zewen,Liu, Shuhua,Yang, Baojun,Zhang, Chengwei.

[13]Presence of a short repeat sequence in internal transcribed spacer (ITS) 1 of the rRNA gene of Sogatella furcifera (Hemiptera: Delphacidae) from geographically different populations in Asia. Matsumoto, Yukiko,Sato, Yuki,Noda, Hiroaki,Fu, Qiang,Matsumura, Masaya.

[14]Effects of two bt rice lines T2A-1 and T1C-19 on the ecological fitness and detoxification enzymes of nilaparvata lugens (hemiptera: Delphacidae) from different populations. Yang, Yajun,He, Jingjing,Dong, Biqin,Xu, Hongxing,Zheng, Xusong,Lu, Zhongxian,He, Jingjing,Fu, Qiang,Lin, Yongjun,Lin, Yongjun.

[15]ATP phosphoribosyltransferase from symbiont Entomomyces delphacidicola invovled in histidine biosynthesis of Nilaparvata lugens (Stal). Wan, Pin-Jun,Tang, Yao-Hua,Yuan, San-Yue,Wang, Wei-Xia,Lai, Feng-Xiang,Fu, Qiang,Tang, Yao-Hua,Yu, Xiao-Ping.

[16]Bt rice expressing Cry1Ab does not stimulate an outbreak of its non-target herbivore, Nilaparvata lugens. Tian, Jun-Ce,Wang, Wei,Fang, Qi,Akhtar, Zunnu Raen,Cui, Hu,Ye, Gong-Yin,Chen, Yang,Tian, Jun-Ce,Wang, Wei,Fang, Qi,Akhtar, Zunnu Raen,Cui, Hu,Ye, Gong-Yin,Peng, Yu-Fa,Guo, Yu-Yuan,Song, Qi-Sheng.

[17]Changes in Endosymbiotic Bacteria of Brown Planthoppers During the Process of Adaptation to Different Resistant Rice Varieties. Xu Hong-Xing,Ye Gong-Yin,Xu Hong-Xing,Zheng Xu-Song,Yang Ya-Jun,Tian Jun-Ce,Lu Zhong-Xian,Fu Qiang.

[18]Metabolic resistance in Nilaparvata lugens to etofenprox, a non-ester pyrethroid insecticide. Sun, Huahua,Yang, Baojun,Zhang, Yixi,Liu, Zewen,Yang, Baojun.

[19]Knockdown of a putative argininosuccinate lyase gene reduces arginine content and impairs nymphal development in Nilaparvata lugens. Yuan, San-Yue,Li, Guo-Qing,Mu, Li-Li,Yuan, San-Yue,Wan, Pin-Jun,Fu, Qiang,Lai, Feng-Xiang.

[20]Differential resistance and cross-resistance to three phenylpyrazole insecticides in the planthopper nilaparvata lugens (Hemiptera: Delphacidae). Zhao, Xinghua,Ning, Zuoping,Shen, Jinliang,Su, Jianya,Gao, Congfen,Zhao, Xinghua,Ning, Zuoping,Shen, Jinliang,Su, Jianya,Gao, Congfen,Zhao, Xinghua,He, Yueping.

作者其他论文 更多>>