Identification and Analysis of Genetic Diversity Structure Within Pisum Genus Based on Microsatellite Markers

文献类型: 外文期刊

第一作者: Zong Xu-xiao

作者: Zong Xu-xiao;Guan Jian-ping;Wang Shu-min;Ford, Rebecca;Redden, Robert R.

作者机构:

关键词: Pisum genus;SSR;genetic diversity;botanical taxonomy;gene pool

期刊名称:AGRICULTURAL SCIENCES IN CHINA ( 影响因子:0.82; 五年影响因子:0.997 )

ISSN: 1671-2927

年卷期: 2009 年 8 卷 3 期

页码:

收录情况: SCI

摘要: To assesse the genetic diversity among wild and cultivated accessions of 8 taxonomic groups in 2 species, and 5 subspecies under Pisum genus, and to analyze population structure and their genetic relationships among various groups of taxonomy, the study tried to verify the fitness of traditionally botanical taxonomic system under Pisum genus and to provide essential information for the exploration and utilization of wild relatives of pea genetic resources. 197 Pisum accessions from 62 counties of 5 continents were employed for SSR analysis using 21 polymorphic primer pairs in this study. Except for cultivated field pea Pisum sativum ssp. sativum var. sativum (94 genotypes), also included were wild relative genotypes that were classified as belonging to P. fulvum, P. sativum ssp.abyssinicum, P. sativum ssp. asiaticum, P. sativum ssp. transcaucasicum, P. sativum ssp. elatius var. elatius, P. sativum ssp. elatius var. pumilio and P. sativum ssp. sativum var. arvense (103 genotypes). The PCA analyses and 3-dimension PCA graphs were conducted and drawn by NTSYSpc 2.2d statistical package. Nei78 genetic distances among groups of genetic resources were calculated, and cluster analysis using UPGMA method was carried out by using Popgene V1.32 statistical package, the dendrogram was drawn by MEGA3.1 statistical package. Allelic statistics were carried out by Popgene V1.32. The significance test between groups of genotypes was carried out by Fstat V2.9.3.2 statistical package. 104 polymorphic bands were amplified using 21 SSR primer pairs with unambiguous unique polymorphic bands. 4.95 alleles were detected by each SSR primer pair in average, of which 65.56% were effective alleles for diversity. PSAD270, PSAC58, PSAA18, PSAC75, PSAA175 and PSAB72 were the most effective SSR pairs. SSR alleles were uniformly distributed among botanical taxon units under Pisum genus, but significant difference appeared in most pairwise comparisons for genetic diversity between taxon unit based groups of genetic resources. Genetic diversity level of wild species P. fulvum was much lower than the cultivated species P. sativum. Under species P. sativum, P. sativum ssp. sativum var. sativum and P. sativum ssp. asiaticum were the highest in gentic diversity, followed by P. sativum ssp. elatius var. elatius and P. sativum ssp. transcaucasicum, P. sativum ssp. elatius var. pumilio, P. sativum ssp. sativum var. arvense and P. sativum ssp. abyssinicum were the lowest. Four gene pool clusters were detected under Pisum genus by using PCA analysis. Gene pool "fulvum" mainly consisted of wild species Pisum fulvum, gene pool "abyssinicum" mainly consisted of P. sativum ssp. abyssinicum, and gene pool "arvense" mainly consisted of P. sativum ssp. sativum var. arvense. While gene pool "sativum" were composed by 5 botanical taxon units, they are P. sativum ssp. asiaticum, P. sativum ssp. elatius var. elatius, P. sativum ssp. transcaucasicum, P. sativum ssp. elatius var. pumilio and P. sativum ssp. sativum var. sativum. "sativum" gene pool constructed the primary gene pool of cultivated genetic resources; "fulvum" gene pool, "abyssinicum" gene pool and "arvense" gene pool together constructed the secondary gene pool of cultivated genetic resources. Pairwise Nei78 genetic distance among botanical taxon based groups of pea genetic resources ranged from 7.531 to 35.956, 3 large cluster groups were identified based on the UPGMA dendrogram. Group I equals to "sativum" and "arvense" gene pools, Group II equals to "abyssinicum" gene pool, and Group III equals to "fulvum" gene pool. The UGMA clustering results generally supporting the PCA clusting results. There were significant differences among most botanical groups under Pisum genus, with clear separation of four gene pools for genetic diversity structure. The research results partially support the traditional botanical taxonomy under Pisum genus, and pointed out its advantage and shortcoming. In order to broaden the genetic bases of pea varieties, the genetic potentials in the four gene pools should be thoroughly exploited.

分类号:

  • 相关文献

[1]Genetic diversity and phenotypic variation for drought resistance in alfalfa (Medicago sativa L.) germplasm collected for drought tolerance. Zhang, Tiejun,Kesoju, Sandya,Hu, Jinguo,Yu, Long-Xi,Zhang, Tiejun,Kesoju, Sandya,Greene, Stephanie L.,Fransen, Steven. 2018

[2]Genetic diversity and relationship of global faba bean (Vicia faba L.) germplasm revealed by ISSR markers. Wang, Hai-fei,Zong, Xu-xiao,Guan, Jian-ping,Yang, Tao,Sun, Xue-lian,Ma, Yu,Redden, Robert. 2012

[3]Genetic Diversity of Source Germplasm of Upland Cotton in China as Determined by SSR Marker Analysis. CHEN Guang,DU Xiong-Ming. 2006

[4]Study on the Genetic Diversity of Natural Chestnut Populations in Shandong China by SSR Markers. Ai Cheng-xiang,Li Guo-tian,Zhang Li-si,Liu Qing-zhong. 2009

[5]Genetic Diversity of Populations of Saccharum spontaneum with Different Ploidy Levels Using SSR Molecular Markers. Liu, X. L.,Deng, Z. H.,Liu, X. L.,Li, X. J.,Xu, C. H.,Lin, X. Q.,Liu, X. L.,Li, X. J.,Xu, C. H.,Lin, X. Q.. 2016

[6]An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production. Zhang, XY,Li, CW,Wang, LF,Wang, HM,You, GX,Dong, YS. 2002

[7]Genetic Diversity Analysis of Pepper Inbred Lines. Liu, Ziji,Yang, Yan,Cao, Zhenmu. 2015

[8]Genetic diversity of Agropyron mongolicum Keng indigenous to northern China. Che Yong-He,Yang Yan-Ping,Yang Xin-Ming,Li Xiu-Quan,Li Li-Hui. 2011

[9]High-throughput development of simple sequence repeat markers for genetic diversity research in Crambe abyssinica. Qi, Weicong,Lin, Feng,Zhao, Han,Liu, Yuhe,Huang, Bangquan,Cheng, Jihua,Zhang, Wei. 2016

[10]Molecular Analysis of the Genetic Diversity of Chinese Hami Melon and Its Relationship to the Melon Germplasm from Central and South Asia. Long, Bo,Long, Chunlin,Aierken, Yasheng,Akashi, Yukari,Phan Thi Phuong Nhi,Halidan, Yikeremu,Nishida, Hidetaka,Kato, Kenji,Aierken, Yasheng,Wu, Min Zhu,Tanaka, Katsunori. 2011

[11]On the use of SSR markers for the genetic characterization of the Agropyron cristatum (L.) Gaertn. in Northern China. Che, Y. H.,Li, H. J.,Yang, X. M.,Li, X. Q.,Li, L. H.,Che, Y. H.,Yang, Y. P.. 2008

[12]Development of Simple Sequence Repeat (SSR) Markers of Sesame (Sesamum indicum) from a Genome Survey. Wei, Xin,Wang, Linhai,Zhang, Yanxin,Qi, Xiaoqiong,Wang, Xiaoling,Ding, Xia,Zhang, Jing,Zhang, Xiurong.

[13]Analysis of Genetic Diversity in Natural Populations of Psathyrostachys huashanica Keng Using Microsatellite (SSR) Markers. Liu Wen-xian,Liu Wei-hua,Gao Ai-nong,Li Li-hui,Liu Wen-xian,Liu Wen-xian,Wu Jun. 2010

[14]Development of microsatellite markers in Cocos nucifera and their application in evaluating the level of genetic diversity of Cocos nucifera. Xiao, Yong,Luo, Yi,Yang, Yaodong,Fan, Haikuo,Xia, Wei,Zhao, Songlin,Qiao, Fei,Fan, Haikuo,Sager, Ross,Mason, Annaliese S.,Mason, Annaliese S.. 2013

[15]Simple Sequence Repeat Assessment of Genetic Diversity among Wild Populations of Chinese Chestnut. Huang, W. G.,Cheng, L. L.,Hu, G. L.,Zhou, Z. J.. 2014

[16]Analysis of Genetic Diversity and Population Structure of Sesame Accessions from Africa and Asia as Major Centers of Its Cultivation. Dossa, Komivi,Wei, Xin,Zhang, Yanxin,Yang, Wenjuan,Liao, Boshou,Zhang, Xiurong,Dossa, Komivi,Wei, Xin,Fonceka, Daniel,Cisse, Ndiaga,Zhang, Xiurong,Fonceka, Daniel,Diouf, Diaga. 2016

[17]An RNA Sequencing Transcriptome Analysis of Grasspea (Lathyrus Sativus L.) and Development of SSR and KASP Markers. Hao, Xiaopeng,Wang, Yan,Chang, Jianwu,Yang, Tao,Liu, Rong,Yao, Yang,Ren, Guixing,Zhang, Hongyan,Wang, Dong,Zong, Xuxiao,Hu, Jinguo,Burlyaeva, Marina. 2017

[18]Analysis of Genetic Diversity in Synthetic Wheat Assemblage (T. turgidumxAegilops tauschii; 2n=6x=42; AABBDD) for Winter Wheat Breeding. Hanif, Uzma,Kazi, Alvina Gul,Afzal, Fakiha,Khalid, Maria,Rasheed, Awais,Munir, Muhammad,Mujeeb-Kazi, Abdul.

[19]GENETIC DIVERSITY OF CHINESE WILD GRAPE SPECIES BY SSR AND SRAP MARKERS. Liu, Chonghuai,Feng, Jiancan,Liu, Chonghuai,Fan, Xiucai,Jiang, Jianfu,Sun, Haisheng,Zhang, Ying,Guo, Dalong.

[20]Genetic diversity and population structure of 288 potato (&ITSolanum tuberosum&IT L.) germplasms revealed by SSR and AFLP markers. Wang, Jian,Liu Qing-chang,Wang, Jian,He Miao-miao,Hou, Lu,Wang Ruo-yu. 2017

作者其他论文 更多>>