Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat

文献类型: 外文期刊

第一作者: Ma, You-Zhi

作者: Ma, You-Zhi;Xu, Zhao-Shi;Ni, Zhi-Yong;Liu, Li;Nie, Li-Na;Li, Lian-Cheng;Chen, Ming;Ma, You-Zhi

作者机构:

关键词: Abiotic stress;DBF;Gene expression;Promoter;Osmotic stress tolerance;Wheat

期刊名称:MOLECULAR GENETICS AND GENOMICS ( 影响因子:3.291; 五年影响因子:3.257 )

ISSN: 1617-4615

年卷期: 2008 年 280 卷 6 期

页码:

收录情况: SCI

摘要: Dehydration responsive element-binding factors (DBFs) belong to the AP2/ERF superfamily and play vital regulatory roles in abiotic stress responses in plants. In this study, we isolated three novel homologs of the DBF gene family in wheat (Triticum aestivum L.) by screening a drought-induced cDNA library and designated them as TaAIDFs (T. aestivum abiotic stress-induced DBFs). Compared to TaAIDFb and TaAIDFc, TaAIDFa lacks a short Ser/Thr-rich region, a putative phosphorylation site, following the AP2/ERF domain. The TaAIDFa gene, located on chromosome 3BS, is interrupted by a single intron at the 17th Arg (R) in the N-terminal domain. The N-terminal region of the TaAIDFa protein modulates nuclear localization. The TaAIDFa protein is capable of binding to CRT/DRE elements in vitro and in vivo, and of trans-activating reporter gene expression in yeast cells. The TaAIDFa promoter, with various stress-related cis-acting elements, drives expression of the GUS reporter gene in wheat calli under stress conditions. This was further confirmed by responses of TaAIDFa transcripts to drought, salinity, low-temperature, and exogenous ABA. Furthermore, overexpression of TaAIDFa activated CRT/DRE-containing genes under normal growth conditions, and improved drought and osmotic stress tolerances in transgenic Arabidopsis plants. These results suggested that TaAIDFa encodes a CRT/DRE element-binding factor that might be involved in multiple abiotic stress signal transduction pathways.

分类号:

  • 相关文献

[1]The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns. Feng, Kun,Zheng, Qingsong,Feng, Kun,Yu, Jiahong,Cheng, Yuan,Ruan, Meiying,Wang, Rongqing,Ye, Qingjing,Zhou, Guozhi,Li, Zhimiao,Yao, Zhuping,Yang, Yuejian,Wan, Hongjian,Yu, Jiahong. 2016

[2]Variants and Gene Expression of the TLR2 Gene and Susceptibility to Mastitis in Cattle. Huang, Jinming,Liu, Li,Wang, Hongmei,Zhang, Cuixia,Ju, Zhihua,Wang, Changfa,Zhong, Jifeng.

[3]Isolation, Characterization and Promoter Analysis of Cell Wall Invertase Gene SoCIN1 from Sugarcane (Saccharum spp.). Wang, Ai-Qin,Huang, Jing-Li,Yang, Li-Tao,Yang, Li-Tao,Li, Yang-Rui,Yang, Li-Tao,Li, Yang-Rui. 2015

[4]Genome-wide identification, classification, and analysis of NADP-ME family members from 12 crucifer species. Tao, Peng,Li, Biyuan,Wang, Wuhong,Yue, Zhichen,Lei, Juanli,Zhao, Yanting,Zhong, Xinmin,Guo, Weiling.

[5]The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants. Zhang, Lina,Zhang, Lichao,Xia, Chuan,Zhao, Guangyao,Jia, Jizeng,Kong, Xiuying. 2016

[6]Identification and characterization of reverse transcriptase domain of mranscriptionally active retrotransposons in wheat genomes. Tang, YM,Ma, YZ,Li, LC,Ye, XG. 2005

[7]A Novel Wheat C-bZIP Gene, TabZIP14-B, Participates in Salt and Freezing Tolerance in Transgenic Plants. Zhang, Lina,Zhang, Lina,Zhang, Lichao,Xia, Chuan,Gao, Lifeng,Hao, Chenyang,Zhao, Guangyao,Jia, Jizeng,Kong, Xiuying. 2017

[8]TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana. Xu, Q.,Feng, W. J.,Peng, H. R.,Ni, Z. F.,Sun, Q. X.,Xu, Q.. 2014

[9]Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. Zhang, Lichao,Zhao, Guangyao,Jia, Jizeng,Liu, Xu,Kong, Xiuying.

[10]Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Xu, Zhongyang,Gongbuzhaxi,Wang, Changyou,Zhang, Hong,Ji, Wanquan,Xu, Zhongyang,Xue, Fei.

[11]Characterization of a Wheat R2R3-MYB Transcription Factor Gene, TaMYB19, Involved in Enhanced Abiotic Stresses in Arabidopsis. Zhang, Lichao,Liu, Guoxiang,Zhao, Guangyao,Xia, Chuan,Jia, Jizeng,Liu, Xu,Kong, Xiuying.

[12]Classification and expression diversification of wheat dehydrin genes. Wang, Yuezhi,Xu, Haibin,Zhu, Huilan,Tao, Ye,Zhang, Guangxiang,Zhang, Lixia,Zhang, Caiqin,Zhang, Zhengzhi,Ma, Zhengqiang,Wang, Yuezhi,Xu, Haibin,Zhu, Huilan,Tao, Ye,Zhang, Guangxiang,Zhang, Lixia,Zhang, Caiqin,Zhang, Zhengzhi,Ma, Zhengqiang,Wang, Yuezhi. 2014

[13]Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia. Wan, Yongqing,Mao, Mingzhu,Yang, Qi,Li, Guojing,Wang, Ruigang,Wan, Dongli,Yang, Feiyun,Mandlaa. 2018

[14]Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis). Li, Na-na,Qian, Wen-jun,Wang, Lu,Cao, Hong-li,Hao, Xin-yuan,Yang, Ya-jun,Wang, Xin-chao,Li, Na-na,Wang, Lu,Cao, Hong-li,Hao, Xin-yuan,Yang, Ya-jun,Wang, Xin-chao,Qian, Wen-jun.

[15]Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. Wei, Yunxie,Shi, Haitao,Xia, Zhiqiang,Tie, Weiwei,Ding, Zehong,Yan, Yan,Wang, Wenquan,Hu, Wei,Li, Kaimian. 2016

[16]Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Hu, Wei,Xia, Zhiqiang,Yan, Yan,Ding, Zehong,Tie, Weiwei,Zou, Meiling,Wei, Yunxie,Lu, Cheng,Hou, Xiaowan,Wang, Wenquan,Peng, Ming,Wang, Lianzhe. 2015

[17]Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress. Qian, Wenjun,Wang, Yuchun,Xiao, Bin,Yang, Yajun,Qian, Wenjun,Yue, Chuan,Wang, Yuchun,Cao, Hongli,Li, Nana,Wang, Lu,Hao, Xinyuan,Wang, Xinchao,Yang, Yajun,Yue, Chuan,Cao, Hongli.

[18]Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. Gebelin, Virginie,Argout, Xavier,Engchuan, Worrawat,Pitollat, Bertrand,Duan, Cuifang,Montoro, Pascal,Leclercq, Julie,Engchuan, Worrawat,Duan, Cuifang. 2012

[19]Molecular cloning and expression analysis of eight calcium-dependent protein kinase (CDPK) genes from banana (Musa acuminata L. AAA group, cv. Cavendish). Wang, Z.,Li, J.,Jia, C.,Xu, B.,Jin, Z.,Jin, Z..

[20]Identification and analysis of the metacaspase gene family in tomato. Liu, Hui,Liu, Jian,Wei, Yongxuan.

作者其他论文 更多>>