Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programmes

文献类型: 外文期刊

第一作者: Yao, M. Z.

作者: Yao, M. Z.;Chen, L.;Yao, M. Z.;Liang, Y. R.

作者机构:

关键词: Camellia sinensis;genetic diversity;genetic relationship;inter-simple sequence repeat

期刊名称:PLANT BREEDING ( 影响因子:1.832; 五年影响因子:1.956 )

ISSN: 0179-9541

年卷期: 2008 年 127 卷 2 期

页码:

收录情况: SCI

摘要: Tea plant [Camellia sinensis (L.) O. Kuntze] is an important beverage crop in the world. In recent years many clonal tea cultivars have been released, and they play major roles in improving the production and quality of tea. It is important to understand the genetic diversity and relatedness of these cultivars to avoid inbreeding and narrow genetic basis in future tea breeding. In the present study, genetic diversity and relationship of 48 tea cultivars from China, Japan and Kenya were evaluated by inter-simple sequence repeat (ISSR) markers. A total of 382 ISSR bands were scored, of which 381 (99.7%) were polymorphic. The ISSR primers showed high ability to distinguish between tea cultivars according to their high Resolving Power (R-P) with an average of 7.4. The mean of Nei's gene diversity (H) and Shannon's information index (I) were 0.22 and 0.35, respectively. More abundant diversity was revealed among cultivars in China than those in Japan and Kenya. Within Chinese populations, the level of diversity in east China was higher than that in other regions. The coefficient of genetic differentiation (G(ST)) was 0.202, which indicates a high degree of genetic variation within populations. This result was further confirmed by analysis of molecular variance, which revealed the variance component within the populations (92.07%) was obviously larger than that among populations (7.93%). The level of gene flow (N-m) was estimated to be 2.0. This could be explained by frequent natural cross-pollination and seed dispersal among tea populations. The pairwise similarity coefficient between the cultivars varied from 0.162 to 0.538. A dendrogram of 48 tea cultivars was constructed where all the tested cultivars were divided into two groups. Our data show that the genetic relationship among tea cultivars can be determined by the ISSR markers. This will provide valuable information to assist parental selection in current and future tea breeding programmes.

分类号:

  • 相关文献

[1]Genetic relatedness among cultivated and wild mulberry (Moraceae : Morus) as revealed by inter-simple sequence repeat analysis in China. Zhao Weiguo,Zhou Zhihua,Miao Xuexia,Wang Sibao,Zhang Lin,Pan Yile,Huang Yongping. 2006

[2]Analysis of the genetic diversity of Chinese native Cannabis sativa cultivars by using ISSR and chromosome markers. Zhang, L. G.,Chang, Y.,Zhang, L. G.,Guan, F. Z.,Yuan, H. M.,Yu, Y.,Zhang, X. F.,Zhao, L. J.. 2014

[3]The use of RAPD markers for detecting genetic diversity, relationship and molecular identification of Chinese elite tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in a tea germplasm repository. Chen, L,Gao, QK,Chen, DM,Xu, CJ.

[4]Genetic differentiation in seven geographic populations of the fleshy shrimp Penaeus (Fenneropenaeus) chinensis based on microsatellite DNA. Meng, Xian Hong,Wang, Qing Yin,Liu, Ping,Kong, Jie,Meng, Xian Hong,Jang, In Kwon.

[5]Evaluation of genetic diversity and relationships in orchardgrass (Dactylis glomerata L.) germplasm based on SRAP markers. Zhang, Xin-Quan,Zeng, Bing,Lan, Ying,Yang, Wu-Yun.

[6]Evaluation of the genetic diversity and population structure of Chinese indigenous horse breeds using 27 microsatellite markers. Ling, Y. H.,Ma, Y. H.,Guan, W. J.,Cheng, Y. J.,Wang, Y. P.,Han, J. L.,Zhao, Q. J.,He, X. H.,Pu, Y. B.,Fu, B. L.,Ling, Y. H.,Ma, Y. H.,Guan, W. J.,Cheng, Y. J.,Wang, Y. P.,Han, J. L.,Zhao, Q. J.,He, X. H.,Pu, Y. B.,Fu, B. L.,Mang, L.. 2011

[7]Molecular characterization of Fusarium oxysporum f. sp cubense race 1 and 4 isolates from Taiwan and Southern China. Li, M. H.,Jiang, Z. D.,Yang, B.,Leng, Y.,Zhong, S.,Chao, C. P.,Liu, J. M.,He, Z. F..

[8]Genetic Diversity of Chinese Indigenous Pig Breeds in Shandong Province Using Microsatellite Markers. Wang, J. Y.,Guo, J. F.,Hu, H. M.,Lin, H. C.,Wang, Cheng,Zhang, Yin,Wu, Y.,Wang, J. Y.,Zhang, Q..

[9]Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Yao, Ming-Zhe,Ma, Chun-Lei,Qiao, Ting-Ting,Jin, Ji-Qiang,Chen, Liang. 2012

[10]Genetic diversity and phylogeny of tea plant (Camellia sinensis) and its related species and varieties in the section Thea genus Camellia determined by randomly amplified polymorphic DNA analysis. Chen, L,Yamaguchi, S.

[11]Genetic linkage map construction for kenaf using SRAP, ISSR and RAPD markers. Chen, Mei-xia,Wei, Cheng-lin,Qi, Jian-min,Tao, Ai-fen,Wu, Wei-ren,Chen, Xing-bo,Su, Jian-guang,Li, Ai-Qing. 2011

[12]Molecular tracing of white muscardine in Asian corn borer using inter-simple sequence repeat (ISSR) analysis. Hu, B. J.,Luan, F. G.,Chen, X.,Li, Z. Z.,Hu, B. J.,Xu, L. N.,Zhou, Z. Y.,Hu, F.. 2015

[13]Study on the Genetic Relationship of Panax Notoginseng and Its Wild Relatives Based on Fourier Translation Infrared Spectroscopy. Li Yun,Zhang Jin-yu,Xu Fu-rong,Li Yun,Wang Yuan-zhong,Yang Wei-ze,Yang Shao-bing,Zhang Jin-yu. 2016

[14]Diversity, population structure, and evolution of local peach cultivars in China identified by simple sequence repeats. Shen, Z. J.,Zhang, Z.,Shen, Z. J.,Ma, R. J.,Cai, Z. X.,Yu, M. L.. 2015

[15]The relationships among Cymbidium sinense cultivars based on RAPD analysis. Zhu, Genfa,Li, Dongmei,Li, Dongmei,Ye, Qingsheng,Guo, Zhenfei. 2008

[16]GENETIC RELATIONSHIPS OF CHINESE GRAPE ACCESSION TO EUROPEAN AND AMERICAN CULTIVARS ASSESSED BY MICROSATELLITE MARKERS. Guo, D. L.,Zhang, J. Y.,Zhang, G. H.,Li, M.,Liu, C. H.. 2010

[17]Infraspecific Classification of Ziziphus jujuba Mill. Using AFLP Marker Technique. Bai, R. X.,Peng, J. Y.,Li, L.,Zhang, Y.,Li, X. Y.. 2009

[18]Molecular characterization and genetic diversity of different genotypes of Oryza sativa and Oryza glaberrima. Chen, Caijin,He, Wenchuang,Nassirou, Tondi Yacouba,Nsabiyumva, Athanase,Dong, Xilong,Jin, Deming,Adedze, Yawo Mawunyo Nevame. 2017

[19]Genetic variability and relationships between and within grape cultivated varieties and wild species based on SRAP markers. Guo, Dalong,Zhang, Junyu,Zhang, Guohai,Li, Meng,Zhang, Qian,Liu, Chonghuai. 2012

[20]High gene flows promote close genetic relationship among fine wool sheep populations (Ovis aries) in China. Han Ji-long,Guo Ting-ting,Liu Jian-bin,Niu Chun-e,Yuan Chao,Yue Yao-jing,Yang Bo-hui,Yang Min. 2016

作者其他论文 更多>>