Using iron fertilizer to control Cd accumulation in rice plants: A new promising technology

文献类型: 外文期刊

第一作者: Shao GuoSheng

作者: Shao GuoSheng;Chen MingXue;Wang DanYing;Xu ChunMei;Mou RenXiang;Cao ZhaoYun;Zhang Xiufu

作者机构:

关键词: rice (Oryza sativa L.);cadmium;iron fertilizer;EDTA center dot Na(2)Fe

期刊名称:SCIENCE IN CHINA SERIES C-LIFE SCIENCES ( 影响因子:1.61; 五年影响因子:1.148 )

ISSN: 1006-9305

年卷期: 2008 年 51 卷 3 期

页码:

收录情况: SCI

摘要: Effects of two kinds of iron fertilizer, FeSO(4) and EDTA center dot Na(2)Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA center dot Na(2)Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA center dot Na(2)Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO(4) or foliar application of FeSO(4) or EDTA center dot Na(2)Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA center dot Na(2)Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.

分类号:

  • 相关文献

[1]Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Cheng, FM,Zhao, NC,Xu, HM,Li, Y,Zhang, WF,Zhu, ZW,Chen, MX. 2006

[2]Effects of Mn-Cd antagonistic interaction on Cd accumulation and major agronomic traits in rice genotypes by different Mn forms. Huang, Qi-na,Yang, Yong-jie,Liang, Yan,Shao, Guo-sheng,An, Hua.

[3]QTL Detection and Epistasis Analysis for Heading Date Using Single Segment Substitution Lines in Rice (Oryza sativa L.). Li Guang-xian,Li Si-shen,Chen Ai-hua,Liu Xu,Wang Wen-ying,Ding Han-feng,Li Jun,Liu Wei,Yao Fang-yin,Li Guang-xian. 2014

[4]Genetic analysis and mapping of rice (Oryza sativa L.) male-sterile (OsMS-L) mutant. Liu, HS,Chu, HW,Li, H,Wang, HM,Wei, JL,Li, N,Ding, SY,Huang, H,Ma, H,Huang, CF,Luo, D,Yuang, Z,Liu, JH,Zhang, DB. 2005

[5]Roles of plant growth regulators on yield, grain qualities and antioxidant enzyme activities in super hybrid rice (Oryza sativa L.). Pan, Shenggang,Rasul, Fahd,Li, Wu,Tian, Hua,Mo, Zhaowen,Duan, Meiyang,Tang, Xiangru,Pan, Shenggang,Tian, Hua,Mo, Zhaowen,Duan, Meiyang,Tang, Xiangru,Rasul, Fahd,Li, Wu. 2013

[6]A B-lectin receptor kinase gene conferring rice blast resistance. Chen, Xuewei,Shang, Junjun,Chen, Dexi,Lei, Cailin,Zou, Yan,Zhai, Wenxue,Liu, Guozhen,Xu, Jichen,Ling, Zhongzhuan,Cao, Gang,Ma, Bingtian,Wang, Yuping,Zhao, Xianfeng,Li, Shigui,Zhu, Lihuang. 2006

[7]Biomass-Based Rice (Oryza sativa L.) Aboveground Architectural Parameter Models. Cao Hong-xin,Liu Yan,Liu Yong-xia,Yue Yan-bin,Zhu Da-wei,Shi Chun-lin,Ge Dao-kuo,Wei Xiu-fang,Hanan, Jim Scott,Yue Yan-bin,Lu Jian-fei,Sun Jin-ying,Yao An-qing,Tian Ping-ping,Bao Tai-lin. 2012

[8]Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels. Zhong, Chu,Cao, Xiaochuang,Hu, Jijie,Zhu, Lianfeng,Zhang, Junhua,Jin, Qianyu,Zhong, Chu,Huang, Jianliang. 2017

[9]Characterization of the rice floral organ number mutant fon3. Jiang, L,Qian, Q,Mao, L,Zhou, QY,Zhai, WX. 2005

[10]Unconditional and conditional QTL mapping for the developmental behavior of tiller number in rice (Oryza sativa L.). Liu, Guifu,Zhu, Haitao,Zeng, Ruizhen,Zhang, Zemin,Li, Wentao,Ding, Xiaohua,Zhao, Fangming,Zhang, Guiquan,Liu, Shuwen. 2010

[11]Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.). Shi YongFeng,Chen Jie,Liu WenQiang,Huang QiNa,Wu JianLi,Shi YongFeng,Huang QiNa,Shen Bo. 2009

[12]A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.). Wang, Yifeng,Hou, Yuxuan,Qiu, Jiehua,Li, Zhiyong,Zhao, Juan,Tong, Xiaohong,Zhang, Jian. 2017

[13]A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.). Qiu, Jiehua,Hou, Yuxuan,Wang, Yifeng,Li, Zhiyong,Zhao, Juan,Tong, Xiaohong,Lin, Haiyan,Wei, Xiangjin,Zhang, Jian,Lin, Haiyan,Ao, Hejun. 2017

[14]Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Gu, Suhai,Su, Ning,Lei, Cailin,Zhang, Xin,Cheng, Zhijun,Guo, Xiuping,Wang, Jiulin,Zhai, Huqu,Gu, Suhai,Su, Ning,Lei, Cailin,Zhang, Xin,Cheng, Zhijun,Guo, Xiuping,Wang, Jiulin,Zhai, Huqu,Wan, Jianmin,Weng, Jianfeng,Wan, Xiangyuan,Gao, He,Guo, Tao,Jiang, Ling. 2008

[15]BRITTLE CULM16 (BRITTLE NODE) is required for the formation of secondary cell walls in rice nodes. Wang Ying,Ren Yu-long,Zhou Kun-neng,Zhang Long,Ming Ming,Wu Fu-qing,Lin Qi-bing,Wang Jiu-lin,Guo Xiu-ping,Zhang Xin,Lei Cai-lin,Cheng Zhi-jun,Wan Jian-min,Chen Sai-hua,Xu Yang,Wan Jian-min. 2017

[16]A Quantitative Proteomic Analysis of Brassinosteroid-induced Protein Phosphorylation in Rice (Oryza sativa L.). Hou, Yuxuan,Qiu, Jiehua,Wang, Yifeng,Li, Zhiyong,Zhao, Juan,Tong, Xiaohong,Lin, Haiyan,Zhang, Jian,Lin, Haiyan. 2017

[17]Detection of unintended effects in genetically modified herbicide-tolerant (GMHT) rice in comparison with non-target phenotypic characteristics. Xiao, Guoying,Jiang, Xianbin,Jiang, Xianbin. 2010

[18]Identification and validation of a novel major QTL for harvest index in rice (Oryza sativa L.). Zhang, Shaohong,He, Xiuying,Zhao, Junliang,Cheng, Yongsheng,Chen, Yuehan,Yang, Tifeng,Dong, Jingfang,Wang, Xiaofei,Liu, Qing,Liu, Wei,Mao, Xingxue,Fu, Hua,Chen, Zhaoming,Liao, Yaoping,Liu, Bin,Zhang, Shaohong,He, Xiuying,Zhao, Junliang,Cheng, Yongsheng,Chen, Yuehan,Yang, Tifeng,Dong, Jingfang,Wang, Xiaofei,Liu, Qing,Liu, Wei,Mao, Xingxue,Fu, Hua,Chen, Zhaoming,Liao, Yaoping,Liu, Bin,Xie, Zhimei,Xie, Zhimei. 2017

[19]Limitation of Unloading in the Developing Grains Is a Possible Cause Responsible for Low Stem Non-structural Carbohydrate Translocation and Poor Grain Yield Formation in Rice through Verification of Recombinant Inbred Lines. Li, Guohui,Pan, Junfeng,Cui, Kehui,Yuan, Musong,Hu, Qiuqian,Wang, Wencheng,Nie, Lixiao,Huang, Jianliang,Peng, Shaobing,Cui, Kehui,Nie, Lixiao,Huang, Jianliang,Mohapatra, Pravat K.,Pan, Junfeng. 2017

[20]Regulatory Role of OsMADS34 in the Determination of Glumes Fate, Grain Yield, and Quality in Rice. Ren, Deyong,Rao, Yuchun,Leng, Yujia,Li, Zizhuang,Xu, Qiankun,Wu, Liwen,Qiu, Zhennan,Zeng, Dali,Hu, Jiang,Zhang, Guangheng,Zhu, Li,Gao, Zhenyu,Chen, Guang,Dong, Guojun,Guo, Longbiao,Qian, Qian,Rao, Yuchun,Li, Zizhuang,Xue, Dawei. 2016

作者其他论文 更多>>