Identification of QTL for maize resistance to common smut by using recombinant inbred lines developed from the Chinese hybrid Yuyu22

文献类型: 外文期刊

第一作者: Ding, Jun-qiang

作者: Ding, Jun-qiang;Chander, Subhash;Li, Jian-sheng;Wang, Xiao-ming

作者机构:

关键词: maize;QTL mapping;SSR markers;Ustilago maydis

期刊名称:JOURNAL OF APPLIED GENETICS ( 影响因子:3.24; 五年影响因子:2.756 )

ISSN: 1234-1983

年卷期: 2008 年 49 卷 2 期

页码:

收录情况: SCI

摘要: Common smut in maize, caused by Ustilago maydis, reduces grain yield greatly. Agronomic and chemical approaches to control such diseases are often impractical or ineffective. Resistance breeding could be an efficient approach to minimize the losses caused by common smut. In this study, quantitative trait loci (QTL) for resistance to common smut in maize were identified. In 2005, a recombinant inbred line (RIL) population along with the resistant (Zong 3) and susceptible (87-1) parents were planted in Beijing and Zhengzhou. Significant genotypic variation in resistance to common smut was observed at both locations after artificial inoculation by injecting inoculum into the whorl of plants with a modified hog vaccinator. Basing on a genetic map containing 246 polymorphic SSR markers with an average linkage distance of 9.11 cM, resistance QTL were analysed by composite interval mapping. Six additive-effect QTL associated with resistance to common smut were identified on chromosomes 3 (three QTL), 5 (one QTL) and 8 (two QTL), and explained 3.2% to 12.4% of the phenotypic variation. Among the 6 QTL, 4 showed significant QTL x environment (Q x E) interaction effects, which accounted for 1.2% to 2.5% of the phenotypic variation. Nine pairs of epistatic interactions were also detected, involving 18 loci distributed on all chromosomes except 2, 6 and 10, which contributed 0.8% to 3.0% of the observed phenotypic variation. However, no significant epistasis x environment interactions were detected. In total, additive QTL effects and Q x E interactions explained 38.8% and 8.0% of the phenotypic variation, respectively. Epistatic effects contributed 15% of the phenotypic variation. The results showed that besides the additive QTL, both epistasis and Q x E interactions formed an important genetic basis for the resistance to Ustilogo maydis in maize.

分类号:

  • 相关文献

[1]QTL mapping of resistance to Sporisorium reiliana in maize. Lubberstedt, T,Xia, XC,Tan, G,Liu, X,Melchinger, AE. 1999

[2]Dissection of the genetic architecture for grain quality-related traits in three RIL populations of maize (Zea mays L.). Wang, Zhiyong,Liu, Na,Ku, Lixia,Tian, Zhiqiang,Shi, Yong,Guo, Shulei,Su, Huihui,Zhang, Liangkun,Ren, Zhenzhen,Li, Guohui,Wang, Xiaobo,Zhu, Yuguang,Chen, Yanhui,Wang, Zhiyong,Liu, Na,Ku, Lixia,Tian, Zhiqiang,Shi, Yong,Guo, Shulei,Su, Huihui,Zhang, Liangkun,Ren, Zhenzhen,Li, Guohui,Wang, Xiaobo,Zhu, Yuguang,Chen, Yanhui,Liu, Na,Qi, Jianshuang,Zhang, Xin.

[3]QTL Mapping in Three Connected Populations Reveals a Set of Consensus Genomic Regions for Low Temperature Germination Ability in Zea mays L.. Li, Xuhui,Wang, Guihua,Li, Li,Jia, Guangyao,Ren, Lisha,Wang, Jianhua,Gu, Riliang,Fu, Junjie,Wang, Guoying,Lubberstedt, Thomas. 2018

[4]Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque-2 in maize. Yang, WP,Zheng, YL,Zheng, WT,Feng, R. 2005

[5]Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. Zhao, Yanxin,Zhang, Ruyang,Xing, Jinfeng,Duan, Minxiao,Li, Jingna,Wang, Naishun,Wang, Wenguang,Zhang, Shasha,Zhang, Huasheng,Shi, Zi,Song, Wei,Zhao, Jiuran,Chen, Zhihui. 2017

[6]Molecular mapping of quantitative trait loci for three kernel-related traits in maize using a double haploid population. Shi, Zi,Song, Wei,Xing, Jinfeng,Duan, Minxiao,Wang, Fengge,Tian, Hongli,Xu, Liwen,Wang, Shuaishuai,Su, Aiguo,Li, Chunhui,Zhang, Ruyang,Zhao, Yanxin,Luo, Meijie,Wang, Jidong,Zhao, Jiuran.

[7]Molecular mapping of quantitative trait loci for grain moisture at harvest in maize. Song, Wei,Shi, Zi,Xing, Jinfeng,Duan, Minxiao,Su, Aiguo,Li, Chunhui,Zhang, Ruyang,Zhao, Yanxin,Luo, Meijie,Wang, Jidong,Zhao, Jiuran.

[8]Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize (Zea mays L.). Ku, Lixia,Ren, Zhenzhen,Shi, Yong,Su, Huihui,Wang, Zhiyong,Li, Guohui,Wang, Xiaobo,Zhu, Yuguang,Zhou, Jinlong,Chen, Yanhui,Ku, Lixia,Ren, Zhenzhen,Shi, Yong,Su, Huihui,Wang, Zhiyong,Li, Guohui,Wang, Xiaobo,Zhu, Yuguang,Zhou, Jinlong,Chen, Yanhui,Chen, Xiao,Qi, Jianshuang,Zhang, Xin.

[9]QTL mapping of resistance to sheath blight in maize (Zea Mays L.). Yang, H,Yang, JP,Rong, TZ,Tan, J,Qiu, ZG.

[10]Development of Genomic SSR Markers and Analysis of Genetic Diversity of 40 Haploid Isolates of Ustilago maydis in China. Zhang, Meijing,Chen, Yanping,Yuan, Jianhua,Meng, Qingchang. 2015

[11]Ustilago maydis reprograms cell proliferation in maize anthers. Gao, Li,Gao, Li,Kelliher, Timothy,Nguyen, Linda,Walbot, Virginia.

[12]QTL Mapping for Adult Plant Resistance to Powdery Mildew in Italian Wheat cv. Strampelli. Asad Muhammad Azeem,BAI Bin,LAN Cai-xia,YAN Jun,XIA Xian-chun,ZHANG Yong,HE Zhong-hu. 2013

[13]Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. Muhammad Jamshed,Fei Jia,Juwu Gong,;Koffi Kibalou Palanga,Yuzhen Shi,Junwen Li,Haihong Shang,Aiying Liu,Tingting Chen,Zhen Zhang,Juan Cai,Qun Ge,Zhi Liu,Quanwei Lu,Xiaoying Deng,Yunna Tan,Harun or Rashid,Zareen Sarfraz,Murtaza Hassan,Wankui Gong,Youlu Yuan. 2016

[14]Availability of Two-dimensional Bulked DNA Sampling in Uniformity Assessment of 8 Inbred Rice Lines. Liu Yan-Fang,Huang Qing-Mei,Yang Xiao-Hong,Li Yan-Gang,Zhang Peng,Wang Jiang -Min,Zhang Hui,Guan Jun-Jiao,Zhang Jian-Hua. 2016

[15]Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships. Tan, Li-Qiang,Peng, Min,Xu, Li-Yi,Chen, Sheng-Xiang,Zou, Yao,Qi, Gui-Nian,Wang, Li-Yuan,Cheng, Hao,Wang, Li-Yuan. 2015

[16]Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Chen, XM,Luo, YH,Xia, XC,Xia, LQ,Chen, X,Ren, ZL,He, ZH,Jia, JZ. 2005

[17]Linkage and mapping analyses of the densonucleosis non-susceptible gene nsd-Z in the silkworm Bombyx mori using SSR markers. Li, MW,Guo, QH,Hou, CX,Miao, XX,Xu, AY,Guo, XJ,Huang, YP. 2006

[18]SSR markers associated with fertility restoration genes against Triticum timopheevii cytoplasm in Diticum aestivum. Zhou, WC,Kolb, FL,Domier, LL,Wang, SW. 2005

[19]Establishment of Molecular Identity Cards for Cucumis melo Cultivars Using SSR Markers. Li, Li,Xu, Xiulan,Wu, Ping,Li, Li,Xu, Xiulan,Wu, Ping,Li, Li,Xu, Xiulan,Wu, Ping,Zhang, Guo,Zhang, Xiaobing. 2018

[20]Identification and mapping of a new powdery mildew resistance allele in the Chinese wheat landrace Hongyoumai. Fu, Bisheng,Zhang, Zhiliang,Zhang, Qiaofeng,Wu, Xiaoyou,Wu, Jizhong,Cai, Shibin,Zhang, Zhiliang. 2017

作者其他论文 更多>>