Effect of root zone pH and form and concentration of nitrogen on accumulation of quality-related components in green teat
文献类型: 外文期刊
第一作者: Ruan, Jianyun
作者: Ruan, Jianyun;Gerendas, Joska;Haerdter, Rolf;Sattelmacher, Burkhard
作者机构:
关键词: ammonium;arginine;caffeine;catechins;nitrate;theanine
期刊名称:JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE ( 影响因子:3.638; 五年影响因子:3.802 )
ISSN: 0022-5142
年卷期: 2007 年 87 卷 8 期
页码:
收录情况: SCI
摘要: Green tea quality is greatly influenced by concentrations of free amino acids, polyphenols (mainly catechins) and caffeine. The present study investigated the principal relationship between selected nutritional factors (form and concentration of N supply, root zone pH) and accumulation of these quality-related components of tea (Camellia sinensis (L.)) plants. Tea plants were hydroponically cultured with NH4+, NO3- and NH4+ + NO3- at pH 4.0, 5.0 and 6.0 in one experiment and supplied with varying N concentrations (0.75, 2.0 and 4.5 mmol L-1, NH4+/NO3- = 3:1) in another experiment. Concentrations of free amino acids were considerably higher in NH4+ - than in NO3- - fed plants. This was attributed to the much greater absorption of NH4+ compared with NO3-. Furthermore, the relative allocation of absorbed N to free amino acids, particularly theanine and glutamine, was substantially increased by NH4+ nutrition, suggesting that NH4+ was more readily assimilated than NO3- into theanine. The concentration of caffeine was increased in NH4+ - and (NH4+ + NO3-)-supplied plants, whereas concentrations of catechins were reduced in (NH4+ + NO3-)-fed plants. Root zone pH did not influence concentrations of most free amino acids in young shoots, with the exception of theanine, which increased at low pH (4.0) irrespective of N form; this likely stemmed from an accumulation effect, as growth decreased more strongly than N absorption. Raising the N supply increased plant N allocation to free amino acids. The increase was most striking for arginine, while theanine was only marginally affected. This may have adverse consequences for green tea quality, as less favourable taste characteristics have been attributed to arginine. (c) 2007 Society of Chemical Industry.
分类号:
- 相关文献
作者其他论文 更多>>
-
Optimization of nutrient management improves productivity, quality and sustainability of albino tea cultivar Baiye-1
作者:Zhu, Yun;Ma, Lifeng;Geng, Saipan;Ruan, Jianyun;Zhu, Yun;Ma, Lifeng;Ruan, Jianyun;Ma, Lifeng;Ruan, Jianyun
关键词:free amino acid; catechin; organic substitution; nutrient use efficiency (NUE); greenhouse gas emissions; nitrogen nutrition; albino tea cultivar
-
Application of metabolic fingerprinting in tea quality evaluation
作者:He, Yun;Liu, Li;Li, Yan;Zhang, Qunfeng;Ruan, Jianyun;Inostroza, Alvaro Cuadros;Kierszniowska, Sylwia
关键词:Tea grade discrimination; Metabolomics; Organic acids; Lipids; Amino acids; Sensory
-
Aluminum Supplementation Mediates the Changes in Tea Plant Growth and Metabolism in Response to Calcium Stress
作者:Zhang, Hua;Ruan, Jianyun;Zhang, Qunfeng;Song, Yakang;Fan, Zhenglei;Hu, Jianhui
关键词:tea plant; calcium; aluminum; root growth; metabolic profile
-
Influence of Organic and Inorganic Fertilizers on Tea Growth and Quality and Soil Properties of Tea Orchards' Top Rhizosphere Soil
作者:Manzoor;Manzoor;Ma, Lifeng;Ni, Kang;Ruan, Jianyun;Manzoor
关键词:tea plant growth; chlorophyll; integrated fertilization; amino acids; catechins; macro and micronutrients; soil properties
-
Epigallocatechin gallate (EGCG) nanoselenium application improves tea quality (Camellia sinensis L.) and soil quality index without losing microbial diversity: A pot experiment under field condition
作者:Zhang, Xiangchun;Yang, Xiangde;Ruan, Jianyun;Chen, Hongping
关键词:Epigallocatechin gallate; Nanoselenium fertilizer; Tea quality; Soil quality index; Microbial diversity; Low-abundance taxa
-
Nitrogen transport and assimilation in tea plant (Camellia sinensis): a review
作者:Zhang, Wenjing;Ni, Kang;Long, Lizhi;Ruan, Jianyun;Zhang, Wenjing;Ni, Kang;Ruan, Jianyun
关键词:nitrogen transport; nitrate reduction; ammonia assimilation; NUE; camellia sinensis; challenges and prospects
-
Nitrogen addition reduces phosphorus availability and induces a shift in soil phosphorus cycling microbial community in a tea (Camellia sinensis L.) plantation
作者:Jiang, Yanyan;Yang, Xiangde;Ni, Kang;Ma, Lifeng;Shi, Yuanzhi;Ruan, Jianyun;Jiang, Yanyan;Ma, Lifeng;Wang, Yu;Cai, Yanjiang;Ma, Qingxu;Jiang, Yanyan
关键词:N addition; P availability; Phosphatase activities; P-cycling genes; Functional communities; Acidic tea soil