Assessing genetic diversity of Chinese cultivated barley by STS markers

文献类型: 外文期刊

第一作者: Chen, Xiwen

作者: Chen, Xiwen;Guo, Shaoying;Chen, Defu;Liu, Pin;Jia, Xiangdong;Sun, Lijun

作者机构:

关键词: barley;eco-geographical zone;genetic diversity;Hordeum vulgare;STS analysis

期刊名称:GENETIC RESOURCES AND CROP EVOLUTION ( 影响因子:1.524; 五年影响因子:1.713 )

ISSN: 0925-9864

年卷期: 2006 年 53 卷 8 期

页码:

收录情况: SCI

摘要: To assess the genetic diversity among China's cultivated barley, sequence tagged site (STS) marker analysis was carried out to characterize 109 morphologically distinctive accessions originating from five Chinese eco-geographical zones. Fourteen polymorphic STS markers representing at least one in each chromosome were chosen for the analysis. The 14 STS markers revealed a total of 47 alleles, with an average of 3.36 alleles per locus (range 2-8). The proportion of polymorphic loci per population averaged 0.84 (range 0.71-1.00); the mean gene diversity averaged 0.39 (range 0.28-0.49). The means of P and H (e) were highest in the Yangtze reaches and Southern zone (P = 1.00; H (e) = 0.46) and lowest (P = 0.71 He = 0.28) in the Yellow river reaches zone. The STS diversity in different zones is quite different from the morphology diversity. The STS variation was partitioned into 17% among the zone and 83% within the zone. Both cluster and principal coordinate analyses clearly separated the accessions into a dispersed group (mostly two-rowed barley with a lower mean GS value) and a concentrated group (mostly six-rowed barley with a higher mean GS value) according to the spike characteristic with only a few exceptions. The accessions from the Qinghai-Tibet plateau formed a distinctive subgroup and can be distinguished from the concentrated group. The role of Tibet in the origin and evolution of cultivated barley has been discussed.

分类号:

  • 相关文献

[1]Cloning and characterization of up-regulated HbSINA4 gene induced by drought stress in Tibetan hulless barley. Yuan, H. J.,Nyima, T. S.,Wang, Y. L.,Xu, Q. J.,Zeng, X. Q.,Yuan, H. J.,Nyima, T. S.,Wang, Y. L.,Xu, Q. J.,Zeng, X. Q.,Luo, X. M.. 2015

[2]Virulence and diversity of Blumeria graminis f.sp hordei in East China. Dreiseitl, Antonin,Wang, Junmei. 2007

[3]Genetic diversity analysis of barley landraces and cultivars in the Shanghai region of China. Chen, Z. -W.,Lu, R. -J.,Zou, L.,Du, Z. -Z.,Gao, R. -H.,He, T.,Huang, J. -H.,Chen, Z. -W.,Lu, R. -J.,Zou, L.,Du, Z. -Z.,Gao, R. -H.,He, T.,Huang, J. -H.. 2012

[4]Isolation and functional characterization of HvDREB1-a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. Xu, Zhao-Shi,Ni, Zhi-Yong,Li, Zhi-Yong,Li, Lian-Cheng,Chen, Ming,Gao, Dong-Yao,Yu, Xiu-Dao,Liu, Pei,Ma, You-Zhi.

[5]An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Hofinger, Bernhard J.,Bass, Chris G.,Baldwin, Thomas,Hammond-Kosack, Kim E.,Kanyuka, Kostya,Russell, Joanne R.,Hedley, Peter E.,Macaulay, Malcolm,Waugh, Robbie,Dos Reis, Mario,Li, Yidan.

[6]Powdery mildew resistance in a collection of Chinese barley varieties. Dreiseitl, Antonin,Yang, Jianming. 2007

[7]Barley traits associated with resistance to Fusarium head blight and deoxynivalenol accumulation. Choo, TM,Vigier, B,Shen, QQ,Martin, RA,Ho, KM,Savard, M. 2004

[8]Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley. Chen, Zhiwei,Huang, Jianhua,Muttucumaru, Nira,Halford, Nigel G.,Powers, Stephen J.. 2013

[9]Identification and distribution of VERNALIZATION1 alleles in Chinese barley (Hordeum vulgare) germplasm. Zhang, C. H.,Xu, D. A.,Zhao, C. H.,Yu, M. Q.,Chen, J.,Qiang, X. L.,Zhang, J..

[10]Analysis of dwarfing genes in Zhepi 1 and Aizao 3: Two dwarfing gene donors in barley breeding in China. Zhang, Jing,Li, Zhen,Zhang, Chihong. 2007

[11]Genetic variability in agronomic traits of a germplasm collection of hulless barley. Zeng, X. Q.. 2015

[12]Inheritance of agronomic traits from the Chinese barley dwarfing gene donors 'Xiaoshan Lixiahuang' and 'Cangzhou Luodama'. Jing, Z. 2000

[13]Allelopathic effects of Hulless barley (Hordeum vulgare L.) on rape (Brassica campestris L.). Li, W.,Shen, S.,Guo, Q. Y.,Li, W.,Shen, S.,Guo, Q. Y.,Li, W.,Shen, S.,Guo, Q. Y.,Li, W.,Shen, S.,Guo, Q. Y..

[14]Fusarium Populations on Chinese Barley Show a Dramatic Gradient in Mycotoxin Profiles. van der Lee, T.,Waalwijk, C.,Yang, L.,Yang, X.,Yu, D..

[15]Different Tolerance in Bread Wheat, Durum Wheat and Barley to Fusarium Crown Rot Disease Caused by Fusarium pseudograminearum. Liu, Yaxi,Wei, Yuming,Zheng, Youliang,Liu, Yaxi,Ma, Jun,Yan, Wei,Liu, Chunji,Ma, Jun,Yan, Guijun,Yan, Wei,Zhou, Meixue,Zhou, Meixue. 2012

[16]Pathotypes and Genetic Diversity of Blumeria graminis f sp hordei in the Winter Barley Regions in China. Zhu Jing-huan,Wang Jun-mei,Jia Qiao-jun,Yang Jian-ming,Lin Feng,Hua Wei,Shang Yi,Zhu Jing-huan,Zhou Yi-jun,Zhou Yi-jun. 2010

[17]Expressed sequence tag-PCR markers for identification of alien barley chromosome 2H in wheat. Wang, M. J.,Zou, H. D.,Wu, Y.,Yuan, Y. P.,Lin, Z. S.,Chen, X.. 2012

[18]Homologous analysis of SSR-ESTs and transferability of wheat SSR-EST markers across barley, rice and maize. Tang, Jifeng,Gao, Lifeng,Cao, Yongsheng,Jia, Jizeng. 2006

[19]Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Liang, YC,Si, J,Nikolic, M,Peng, Y,Chen, W,Jiang, Y. 2005

[20]High Performance Liquid Chromatography Fingerprinting of Flavonoids Between Parents and Generations in Barley Grain. Yang, Tao,Zeng, Yawen,Du, Juan,Yang, Shuming,Pu, Xiaoying,Yang, Tao,Duan, Chengli,Yang, Shengchao,Duan, Chengli. 2017

作者其他论文 更多>>