Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings

文献类型: 外文期刊

第一作者: Jia, Jinping

作者: Jia, Jinping;Fu, Junjie;Zheng, Jun;Zhou, Xin;Huai, Junling;Wang, Jianhua;Wang, Meng;Zhang, Ying;Chen, Xiaoping;Zhang, Jinpeng;Zhao, Jinfeng;Su, Zhen;Lv, Yuping;Wang, Guoying

作者机构:

关键词: maize;full-length cDNA;osmotic stress;gene expression;macroarray

期刊名称:PLANT JOURNAL ( 影响因子:6.417; 五年影响因子:7.627 )

ISSN: 0960-7412

年卷期: 2006 年 48 卷 5 期

页码:

收录情况: SCI

摘要: Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from maize (Zea mays L.) remains limited. Here we report the construction of a full-length enriched cDNA library from osmotically stressed maize seedlings by using the modified CAP trapper method. From this library, 2073 full-length cDNAs (accession numbers DQ244142-DQ246214) were collected and further analyzed by sequencing from both the 5'- and 3'-ends. A total of 1728 (83.4%) sequences did not match known maize mRNA and full-length cDNA sequences in the GenBank database and represent new full-length genes. After alignment of the 2073 full-length cDNAs with 448 maize BAC sequences, it was found that 84 full-length cDNAs could be mapped to the BACs. Of these, 43 genes (51.2%) have been correctly annotated from the BAC clones, 37 genes (44.0%) have been annotated with a different exon-intron structure from our cDNA, and four genes (4.76%) had no annotations in the TIGR database. Expression analysis of 2073 full-length maize cDNAs using a cDNA macroarray led to the identification of 79 genes upregulated by stress treatments and 329 downregulated genes. Of the 79 stress-inducible genes, 30 genes contain ABRE, DRE, MYB, MYC core sequences or other abiotic-responsive cis-acting elements in their promoters. These results suggest that these cis-acting elements and the corresponding transcription factors take part in plant responses to osmotic stress either cooperatively or independently. Additionally, the data suggest that an ethylene signaling pathway may be involved in the maize response to drought stress.

分类号:

  • 相关文献

[1]Identification and expression analysis of genes responsive to drought stress in peanut. Hou, L.,Liu, W.,Li, Z.,Huang, C.,Fang, X. L.,Wang, Q.,Liu, X.,Hou, L.,Liu, W.,Li, Z.,Huang, C.,Fang, X. L.,Wang, Q.,Liu, X.,Fang, X. L..

[2]The dynamic changing of Ca2+ cellular localization in maize leaflets under drought stress. Shao Hong-bo,Liu Zi-hui,Zhang Hong-mei,Guo Xiu-lin,Shao Hong-bo,Shao Hong-bo,Shao Hong-bo,Ma Yuan-yuan,Song Wei-yi,Ni Fu-tai. 2009

[3]Overexpression of ZmOPR1 in Arabidopsis enhanced the tolerance to osmotic and salt stress during seed germination. Zheng, Jun,Wang, Guoying,Gu, Dan,Liu, Xihui,Wang, Maoyan,Hou, Wei,Wang, Guoying,Wang, Jianhua,Zheng, Jun,Wang, Guoying. 2008

[4]Cloning and characterization of a putative 12-oxophytodienoic acid reductase cDNA induced by osmotic stress in roots of foxtail millet. Zhang, Jin-Peng,Liu, Ting-Song,Zheng, Jun,Jin, Zheng,Zhu, Yun,Guo, Jiu-Feng,Wang, Guo-Ying.

[5]Transcription of potassium transporter genes of KT/HAK/KUP family in peach seedlings and responses to abiotic stresses. Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z..

[6]Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction. Sun, Wei,Sun, Hong Wei,Yang, Shu Ke,Lu, Xing Bo,Xu, Xiao Hui,Chen, Hao,Wang, Juan,Sang, Ya Lin,Chen, Hao,Sang, Ya Lin.

[7]Endogenous hormones and expression of senescence-related genes in different senescent types of maize. He, P,Osaki, M,Takebe, M,Shinano, T,Wasaki, J. 2005

[8]Expression of genes related to nitrogen metabolism in maize grown under organic and inorganic nitrogen supplies. Guo, Song,Gu, Ri-liang,Yuan, Li-xing,Mi, Guo-hua,Sun, Wen-yan,Zhao, Bing-qiang.

[9]ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Han, Jienan,Wang, Lifeng,Zheng, Hongyan,Pan, Xiaoying,Chen, Fanjun,Li, Xuexian,Wang, Lifeng,Li, Huiyong.

[10]Genome-Wide Identification of the Maize Calcium-Dependent Protein Kinase Gene Family. Ma, Pengda,Liu, Jingying,Yang, Xiangdong,Ma, Rui.

[11]Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA of OH/CHA/99. Liu, GQ,Liu, ZX,Xie, QG,Chen, YL,Bao, HF,Liu, XT.

[12]Infective viruses produced from full-length complementary DNA of swine vesicular disease viruses HK/70 strain. Zheng Haixue,Liu Xinagtao,Shang Youjun,Wu Jinyan,Bai Xingwen,Jin Ye,Sun Shiqi,Guo Huichen,Tian Hong,Feng Xia,Yin Shaunghui,Guo Jianhong,Cong Guozheng,Liu Zaixin,Chang Huiyun,Ma Junwu,Xie Qingge.

[13]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[14]Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings. Su, Jiuchang,Zhang, Yihua,Nie, Yang,Cheng, Dan,Shen, Wenbiao,Wang, Ren,Hu, Huali,Chen, Jun,Zhang, Jiaofei,Du, Yuanwei. 2018

[15]Characterization and Expression Analysis of Four Glycine-Rich RNA-Binding Proteins Involved in Osmotic Response in Tobacco (Nicotiana tabacum cv. Xanthi). Zeng Qian-chun,Chen Xuan,Lu Xiu-ping,Li Wen-zheng,Yu Di-qiu. 2010

[16]Evaluating the Impacts of Osmotic and Oxidative Stress on Common Carp (Cyprinus carpio, L.) Sperm Caused by Cryopreservation Techniques. Li, Ping,Li, Zhi-Hua,Dzyuba, Boris,Hulak, Martin,Rodina, Marek,Linhart, Otomar,Li, Ping,Li, Zhi-Hua,Dzyuba, Boris. 2010

[17]Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase. Zhang, Baige,Liu, Kaidong,Zheng, Yan,Wang, Yingxiang,Wang, Jinxiang,Liao, Hong,Zhang, Baige,Liu, Kaidong,Wang, Jinxiang. 2013

[18]Physiological and antioxidant responses of three leguminous species to saline environment during seed germination stage. Wang, Xiaoshan,Gu, Hongru,Wang, Xiaoshan,Zhao, Guoqi. 2009

[19]A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. Zhang, Dayong,He, Xiaolan,Xu, Zhaolong,Xu, Ling,Wei, Peipei,Huang, Yihong,Brestic, Marian,Ma, Hongxiang,Shao, Hongbo,Tong, Jinfeng,Brestic, Marian,Shao, Hongbo. 2016

[20]Identification of AtSM34, a novel tonoplast intrinsic protein-interacting polypeptide expressed in response to osmotic stress in germinating seedlings. Li LiJuan,Wei PengCheng,Chen QiJun,Chen Jia,Wang XueChen,Ren Fei. 2011

作者其他论文 更多>>