Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye

文献类型: 外文期刊

第一作者: An, Diao-Guo

作者: An, Diao-Guo;Li, Li-Hui;Li, Jun-Ming;Li, Hong-Jie;Zhu, Yong-Guan

作者机构:

关键词: genomic in situ hybridization;nullisomic back-cross procedure;PCR;powdery mildew resistance;wheat-rye chromosome substitution line

期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:7.061; 五年影响因子:6.002 )

ISSN: 1672-9072

年卷期: 2006 年 48 卷 7 期

页码:

收录情况: SCI

摘要: Using the nullisomic back-cross procedure, four wheat-rye chromosome substitution 2R (2D) lines with different agronomic performance, designated WR02-145-1, WR01-145-2, WR02-145-3, and WR02-145-4, were produced from a cross between 2D nullisomic wheat (Triticum aestivum L. cv. "Xiaoyan 6") and rye (Secale cereale L. cv. "German White"). The chromosomal constitution of 2n=42=21 in WR02-145 lines was confirmed by cytological and molecular cytogenetic methods. Using genomic in situ hybridization on root tip chromosome preparations, a pair of intact rye chromosomes was detected in the WR02-145 lines. PCR using chromosome-specific primers confirmed the presence of 2R chromosomes of rye in these wheat-rye lines, indicating that WR02-145 lines are disomic chromosome substitution lines 2R (213). The WR02-145 lines are resistant to the powdery mildew (Erysiphe graminis DC. f. sp. tritici E. Marchal) isolates prevalent in northern China and may possess gene(s) for resistance to powdery mildew, which differ from the previously identified Pm7 gene located on chromosome 2RL. The newly developed "Xiaoyan 6"-"German White" 2R (2D) chromosome substitution lines are genetically stable, show desirable agronomic traits, and are expected to be useful in wheat improvement.

分类号:

  • 相关文献

[1]Development and identification of wheat-Haynaldia villosa T6DL.6VS chromosome translocation lines conferring resistance to powdery mildew. Li, H,Chen, X,Xin, ZY,Ma, YZ,Xu, HJ,Chen, XY,Jia, X. 2005

[2]Resistance to eyespot of wheat, caused by Tapesia yallundae, derived from Thinopyrum intermedium homoeologous group 4 chromosome. Li, HJ,Arterburn, M,Jones, SS,Murray, TD. 2005

[3]Multiple structural aberrations and physical mapping of rye chromosome 2R introgressed into wheat. Lifang Zhuang,Peng Liu,Zhenqian Liu,Tingting Chen,Nan Wu,Ling Sun,Zengjun Qi.

[4]Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Chen, XM,Luo, YH,Xia, XC,Xia, LQ,Chen, X,Ren, ZL,He, ZH,Jia, JZ. 2005

[5]Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Huang, XQ,Wang, LX,Xu, MX,Roder, MS. 2003

[6]Isolation, chromosomal location, and expression analysis of putative powdery mildew resistance genes in wheat (Triticum aestivum L.). Wan, Ping,Ling, Lijun,Cao, Shuanghe,Wang, Xianping,Zhang, Wenjun,Ling, Hongqing,Zhu, Lihuang,Zhang, Xiangqi. 2007

[7]Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing. Zhang, Peng,Zhu, Yuqiang,Wang, Lili,Chen, Liping,Zhou, Shengjun. 2015

[8]Genetic behavior of Triticum aestivum-Dasypyrum villosum translocation chromosomes T6V#4S.6DL and T6V#2S.6AL carrying powdery mildew resistance. Liu Chang,Ye Xing-guo,Wang Mei-jiao,Li Shi-jin,Lin Zhi-shan. 2017

[9]Characterization of eleven monosomic alien addition lines added from Gossypium anomalum to Gossypium hirsutum using improved GISH and SSR markers. Wang, Xiaoxiao,Wang, Yingying,Wang, Chen,Chen, Yu,Chen, Yu,Feng, Shouli,Zhao, Ting,Zhou, Baoliang,Chen, Yu. 2016

[10]Inducement and identification of chromosome introgression and translocation of Gossypium australe on Gossypium hirsutum. Wang, Yingying,Feng, Shouli,Li, Sai,Tang, Dong,Chen, Yu,Chen, Yu,Zhou, Baoliang,Chen, Yu,Chen, Yu. 2018

[11]Variation of B Chromosome Associated with Tissue Culture in Wheat-rye Cross. Li, Hongjie,Tian, Bohong. 2009

[12]Induction and transmission of wheat-Haynaldia villosa chromosomal translocations. Cao, Yaping,Bie, Tongde,Wang, Xiue,Chen, Peidu,Cao, Yaping,Bie, Tongde. 2009

[13]Molecular cytogenetic analysis of intergeneric chromosomal translocations between wheat (Triticum aestivum L.) and Dasypyrum villosum arising from tissue culture. Li, HJ,Guo, BH,Li, YW,Du, LQ,Jia, X,Chu, CC. 2000

[14]Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Tu, Yuqin,Sun, Jian,Ge, Xianhong,Li, Zaiyun,Sun, Jian.

[15]Primary investigation on GISH-NOR in cotton. Liu, SH,Wang, KB,Song, GL,Wang, CY,Liu, F,Li, SH,Zhang, XD,Wang, YH.

[16]Microdissection of Haynaldia villosa Telosome 6VS and Cloning of Species-specific DNA Sequences. Kong, FJ,Chen, X,Ma, YZ,Xin, ZY,Li, LC,Zhang, ZY,Lin, ZS.

[17]Genetic Relationships Among Five Basic Genomes St, E, A, B and D in Triticeae Revealed by Genomic Southern and in situ Hybridization. Liu, Zhao,Li, Dayong,Zhang, Xueyong.

[18]Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp trichophorum. Yang, ZJ,Li, GR,Chang, ZJ,Zhou, JP,Ren, ZL. 2006

[19]A novel genome of C and the first autotetraploid species in the Setaria genus identified by genomic in situ hybridization. Wang, Yongqiang,Zhi, Hui,Li, Wei,Li, Haiquan,Wang, Yongfang,Diao, Xianmin,Wang, Yongfang,Huang, Zhanjing,Diao, Xianmin,Zhi, Hui,Diao, Xianmin.

[20]Identification of wheat-Thinopyrum intermedium 2Ai-2 ditelosomic addition and substitution lines with resistance to barley yellow dwarf virus. Lin, ZS,Huang, DH,Du, LP,Ye, XG,Xin, ZY. 2005

作者其他论文 更多>>
  • Grazing accelerates soil carbon loss by enhancing the degradability of soil water-extractable organic matter and microbial turnover in fragile grasslands

    作者:Chen, Hao;Lin, Liwen;Chen, Hao;Wang, Fei;Ji, Mukan;Kong, Weidong;Shi, Quan;Wu, Jianshuang;Wu, Jianshuang;Zhang, Xianzhou;Wang, Fei;Lin, Qimei;Zhu, Yong-Guan;Liang, Chao;Kong, Weidong;Kong, Weidong

    关键词:Grazing; Soil water-extractable organic matter; Degradability; Organic matter decomposition; Carbon loss; Grassland soil

  • TaPPR13, a Pentatricopeptide Repeat Protein Gene Activated by TaBZR2, Confers Drought Stress Tolerance by Enhancing the Antioxidant Defense System and Promoting Retrograde Signaling in Wheat (Triticum aestivum)

    作者:Hou, Ze-Hao;Zheng, Lei;Wang, Jing-Yue;Wei, Ji-Tong;Yang, Shu-Hui;Jiao, Yuan-Chen;Cheng, Wen-Jing;Yu, Tai-Fei;Chen, Jun;Zhou, Yong-Bin;Chen, Ming;Li, Li-Hui;Ma, You-Zhi;Xu, Zhao-Shi;Zheng, Wei-Jun;Nie, Xiao-Jun;Zhang, Shuang-Xi;Ma, Xiao-Fei;Ru, Jing-Na;Liu, Yong-Wei;Cao, Xin-You;Li, Li-Hui;Ma, You-Zhi;Xu, Zhao-Shi

    关键词:chloroplast; drought tolerance; GWAS; ROS; retrograde signaling

  • Aspergillus Mycotoxins: The Major Food Contaminants

    作者:Xue, Mengyao;Qu, Zheng;An, Yi;Wang, Feng;Sun, Yuebing;Wang, Lili;Hou, Jie;Zhang, Chenchen;Yang, Mengmeng;Ding, Yiming;Yao, Yanpo;Moretti, Antonio;Logrieco, Antonio F.;Chu, Haiyan;Zhang, Qi;Li, Peiwu;Sun, Changpo;Ren, Xianfeng;Cui, Li;Chen, Qinglin;Li, Chengjun;Zhong, Huan;Cao, Zhiyan;Zhu, Yong-Guan

    关键词:climate change; control measures; crops; human health; mycotoxins

  • Nitrogen fertilization modulates rice phyllosphere functional genes and pathogens through fungal communities

    作者:Wu, Wei-Feng;Li, Xin-Yuan;Sun, Cheng-liang;Zhu, Yong-Guan;Lin, Xian-Yong;Chen, Song Can;Jin, Bing-Jie;Li, Gang;Jin, Bing-Jie;Li, Gang;Wu, Chun-Yan;Zhu, Yong-Guan

    关键词:Nitrogen fertilization; Phyllosphere microbiome; Functional genes; Pathogens; Bacterial -fungal interactions

  • Biogeographic patterns and drivers of soil viromes

    作者:Ma, Bin;Wang, Yiling;Zhao, Kankan;Hu, Lingfei;Xue, Ran;Dai, Hengyi;Xu, Jianming;Ma, Bin;Wang, Yiling;Zhao, Kankan;Hu, Lingfei;Xue, Ran;Dai, Hengyi;Xu, Jianming;Ma, Bin;Xue, Ran;Stirling, Erinne;Stirling, Erinne;Lv, Xiaofei;Yu, Yijun;Tang, Chao;Dong, Baiyu;Wu, Chuyi;Dahlgren, Randy A.;Tan, Xiangfeng;Zhu, Yong-Guan;Chu, Haiyan

    关键词:

  • The abundant fraction of soil microbiomes regulates the rhizosphere function in crop wild progenitors

    作者:de Celis, Miguel;Garcia-Palacios, Pablo;Fernandez-Alonso, Maria Jose;Palomino, Javier;Milla, Ruben;Fernandez-Alonso, Maria Jose;Belda, Ignacio;Garcia, Carlos;Ochoa-Hueso, Raul;Singh, Brajesh K.;Wang, Jun-Tao;Singh, Brajesh K.;Wang, Jun-Tao;Yin, Yue;Abdala-Roberts, Luis;Quijano-Medina, Teresa;Alfaro, Fernando D.;Rivera, Daniela S.;Angulo-Perez, Diego;Arthikala, Manoj-Kumar;Nanjareddy, Kalpana;Corwin, Jason;Trivedi, Pankaj;Corwin, Jason;Trivedi, Pankaj;Gui-Lan, Duan;Hernandez-Lopez, Antonio;Pasari, Babak;Shaaf, Salar;Yang, Qingwen;Zaady, Eli;Zhu, Yong-Guan;Delgado-Baquerizo, Manuel;Milla, Ruben;Garcia-Palacios, Pablo

    关键词:abundant and rare taxa; crop wild progenitors; plant domestication; plant-soil interactions; rhizosphere; soil biodiversity; soil multifunctionality

  • The abundant fraction of soil microbiomes regulates the rhizosphere function in crop wild progenitors

    作者:de Celis, Miguel;Garcia-Palacios, Pablo;Fernandez-Alonso, Maria Jose;Palomino, Javier;Milla, Ruben;Fernandez-Alonso, Maria Jose;Belda, Ignacio;Garcia, Carlos;Ochoa-Hueso, Raul;Singh, Brajesh K.;Wang, Jun-Tao;Singh, Brajesh K.;Wang, Jun-Tao;Yin, Yue;Duan, Gui-Lan;Abdala-Roberts, Luis;Quijano-Medina, Teresa;Alfaro, Fernando D.;Rivera, Daniela S.;Angulo-Perez, Diego;Arthikala, Manoj-Kumar;Nanjareddy, Kalpana;Corwin, Jason;Trivedi, Pankaj;Corwin, Jason;Trivedi, Pankaj;Hernandez-Lopez, Antonio;Pasari, Babak;Shaaf, Salar;Yang, Qingwen;Zaady, Eli;Zhu, Yong-Guan;Delgado-Baquerizo, Manuel;Milla, Ruben;Garcia-Palacios, Pablo;de Celis, Miguel;Garcia-Palacios, Pablo;Delgado-Baquerizo, Manuel;Milla, Ruben

    关键词:abundant and rare taxa; crop wild progenitors; plant domestication; plant-soil interactions; rhizosphere; soil biodiversity; soil multifunctionality