Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus

文献类型: 外文期刊

第一作者: Liang, YC

作者: Liang, YC;Sun, WC;Si, J;Romheld, V

作者机构:

关键词: cucumber;induced resistance;pathogenesis-related proteins;Podosphaera xanthii;silicon;Sphaerotheca fuliginea

期刊名称:PLANT PATHOLOGY ( 影响因子:2.59; 五年影响因子:2.924 )

ISSN: 0032-0862

年卷期: 2005 年 54 卷 5 期

页码:

收录情况: SCI

摘要: Two cucumber (Cucumis sativus) cultivars differing in their resistance to powdery mildew, Ningfeng No. 3 (susceptible) and Jinchun No. 4 (resistant), were used to study the effects of foliar- and root-applied silicon on resistance to infection by Podosphaera xanthii (syn. Sphaerotheca fuliginea) and the production of pathogenesis-related proteins (PRs). The results indicated that inoculation with P. xanthii significantly suppressed subsequent infection by powdery mildew compared with noninoculation, regardless of Si application. Root-applied Si significantly suppressed powdery mildew, the disease index being lower in Si-supplied than in Si-deprived plants, regardless of inoculation treatment. The resistant cultivar had a more constant lower disease index than the susceptible cultivar, irrespective of inoculation or Si treatment. Moreover, with root-applied Si, activities of PRs (for example peroxidase, polyphenoloxidase and chitinase) were significantly enhanced in inoculated lower leaves or noninoculated upper leaves in inoculated plants of both cultivars. Root-applied Si significantly decreased the activity of phenylalanine ammonia-lyase in inoculated leaves, but increased it in noninoculated upper leaves. However, Si treatment failed to change significantly the activity of PRs in plants without fungal attack. Compared to the control (no Si), foliar-applied Si had no effects either on the suppression of subsequent infection by P. xanthii or on the activity of PRs, irrespective of inoculation. Based on the findings in this study and previous reports, it was concluded that foliar-applied Si can effectively control infections by P. xanthii only via the physical barrier of Si deposited on leaf surfaces, and/or osmotic effect of the silicate applied, but cannot enhance systemic acquired resistance induced by inoculation, while continuously root-applied Si can enhance defence resistance in response to infection by P. xanthii in cucumber.

分类号:

  • 相关文献

[1]Enzymatic and histopathological changes during resistance of cowpea to Fusarium oxysporum f. sp tracheiphilum. Zhang, Yanrong,Zhang, Xiaoyun,Wen, Feng,Wang, Xiaojing. 2006

[2]Comparative transcriptome profiling of genes and pathways related to resistance against powdery mildew in two contrasting melon genotypes. Zhu, Qianglong,Gao, Peng,Wan, Yan,Cui, Haonan,Fan, Chao,Liu, Shi,Luan, Feishi,Zhu, Qianglong,Gao, Peng,Wan, Yan,Cui, Haonan,Liu, Shi,Luan, Feishi,Fan, Chao. 2018

[3]Efficacy of Rheum officinale liquid formulation on cucumber powdery mildew. Yang, Xiaojun,Ni, Hanwen,Yang, Xiaojun,Yang, Lijun,Yu, Dazhao,Ma, Xingxia,Qian, Yixin.

[4]Dry mycelium of Penicillium chrysogenum induces expression of pathogenesis-related protein genes and resistance against wilt diseases in Bt transgenic cotton. Chen, Suiyun,Dong, Hezhong,Fan, Yuqin,Li, Weijiang,Cohen, Yigal. 2006

[5]Eugenol enhances the resistance of tomato against tomato yellow leaf curl virus. Wang, Chunmei,Fan, Yongjian,Wang, Chunmei.

[6]Efficacy of osthol, a potent coumarin compound, in controlling powdery mildew caused by Sphaerotheca fuliginea. Wang, Chun-Mei,Zhou, Wei,Li, Cai-Xia,Chen, Hao,Shi, Zhi-Qi,Fan, Yong-Jian. 2009

[7]Application of osthol induces a resistance response against powdery mildew in pumpkin leaves. Shi, Zhiqi,Wang, Fei,Zhou, Wei,Zhang, Peng,Fan, Yong Jian. 2007

[8]Distribution of Baseline Sensitivities to Natural Product Physcion Among Isolates of Sphaerotheca fuliginea and Pseudoperonospora cubensis. Yang, X. J.,Ni, H.,Yang, X. J.,Yang, L. J.,Zeng, F. S.,Xiang, L. B.,Wang, S. N.,Yu, D. Z..

[9]Application of silicon fertilizer affects nutritional quality of rice. Liu, Qihua,Zhou, Xuebiao,Sun, Zhaowen. 2017

[10]Importance of plant species and external silicon concentration to active silicon uptake and transport. Liang, Yongchao,Hua, Haixia,Zhu, Yong-Guan,Zhang, Jie,Cheng, Chunmei,Roemheld, Volker. 2006

[11]Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Liang, YC,Zhang, WH,Chen, Q,Ding, RX. 2005

[12]Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Liang, Yongchao,Zhang, Wenhua,Chen, Qin,Liu, Youliang,Ding, Ruixing. 2006

[13]Role of Silicon in Alleviating Salt-Induced Toxicity in White Clover. Guo, Qiang,Meng, Lin,Mao, Peichun,Tian, Xiaoxia. 2013

[14]Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Li, Ping,Song, Alin,Li, Zhaojun,Fan, Fenliang,Liang, Yongchao,Li, Ping.

[15]Silicon ameliorates manganese toxicity by regulating both physiological processes and expression of genes associated with photosynthesis in rice (Oryza sativa L.). Li, Ping,Song, Alin,Li, Zhaojun,Fan, Fenliang,Liang, Yongchao,Li, Ping,Liang, Yongchao.

[16]Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Liang, Yongchao,Sun, Wanchun,Zhu, Yong-Guan,Christie, Peter.

[17]The effects of silicon fertilizer on denitrification potential and associated genes abundance in paddy soil. Song, Alin,Fan, Fenliang,Yin, Chang,Wen, Shilin,Zhang, Yalei,Fan, Xiaoping,Liang, Yongchao.

[18]Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. Pavlovic, Jelena,Maksimovic, Vuk,Stevic, Nenad,Nikolic, Miroslav,Samardzic, Jelena,Timotijevic, Gordana,Laursen, Kristian H.,Hansen, Thomas H.,Husted, Soren,Schjoerring, Jan K.,Liang, Yongchao.

[19]Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Song, Alin,Zhang, Jie,Liang, Yongchao,Li, Zhaojun,Xue, Gaofeng,Fan, Fenliang,Liang, Yongchao,Liang, Yongchao.

[20]In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer. Ning, Dongfeng,Duan, Aiwang,Liu, Zhandong,Liang, Yongchao,Song, Alin.

作者其他论文 更多>>