Endogenous hormones and expression of senescence-related genes in different senescent types of maize

文献类型: 外文期刊

第一作者: He, P

作者: He, P;Osaki, M;Takebe, M;Shinano, T;Wasaki, J

作者机构:

关键词: abscisic acid;cytokinins;gene expression;leaf senescence;maize

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN: 0022-0957

年卷期: 2005 年 56 卷 414 期

页码:

收录情况: SCI

摘要: Levels of cytokinins and abscisic acid (ABA) and the expression of senescence-related genes were investigated in two maize (Zea mays L.) cultivars of different senescence type, cv. P3845 (stay-green) and cv. Hokkou 55 (earlier senescent), in a field study. The delay in leaf senescence in P3845 was correlated with increased levels of chlorophyll and nitrogen and a higher photon-saturated photosynthetic rate (P-sat). Compared with the earlier senescent Hokkou 55, P3845 showed enhanced contents of cytokinins (trans-zeatin riboside, t-ZR; dihydrozeatin riboside, DHZR; isopentenyladenosine, iPA) and reduced levels of ABA in its leaves. In roots, P3845 had increased levels of t-ZR, DHZR, and ABA, but decreased concentrations of iPA. It was concluded that a higher rate of cytokinin transport from roots to leaves contributes to the delay of senescence in P3845. By contrast, the translocation of ABA from roots to shoots may be blocked in the stay-green cultivar, which also results in retarded leaf senescence. P3845 ear leaves contained more malondialdehyde (MDA) and higher catalase (CAT) and superoxide dismutase (SOD) activities than Hokkou 55. Since the accumulation of the mRNAs for Rubisco small subunit (rbcS), phosphoenolpyruvate carboxylase (PEPC), and SOD peaked after Chl content and P-sat had reached their maxima, it is speculated that when leaf senescence is initiated, Chl contents decrease first, followed by the degradation of the photosynthetic apparatus and of photosynthesis-related enzymes. See1 and See2 encode senescence-related cysteine proteases; their mRNAs were most abundant in yellowing leaves, suggesting that these proteins are involved in the process of senescence rather than its initiation. mRNAs of both genes were more abundant in Hokkou 55 than in P3845, which suggests a regulation of leaf senescence at the transcriptional level.

分类号:

  • 相关文献

[1]Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. Dong, Hezhong,Li, Weijiang,Zhang, Dongmei,Dong, Hezhong,Niu, Yuehua. 2008

[2]Effects of early-fruit removal on endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Dong, Hezhong,Niu, Yuehua,Kong, Xiangqiang,Luo, Zhen.

[3]Effects of pollination-prevention on leaf senescence and post-silking nitrogen accumulation and remobilization in maize hybrids released in the past four decades in China. Guo, Song,Chen, Fanjun,Yuan, Lixing,Mi, Guohua,Guo, Song.

[4]The changes of organelle ultrastructure and Ca2+ homeostasis in maize mesophyll cells during the process of drought-induced leaf senescence. Ma, Yuan-Yuan,Guo, Xiu-Lin,Liu, Zi-Hui,Ma, Yuan-Yuan,Shao, Hong-Bo,Shao, Hong-Bo,Liu, Bin-Hui. 2011

[5]Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Chen, Yizhen,Dong, Hezhong,Chen, Yizhen,Kong, Xiangqiang,Dong, Hezhong,Kong, Xiangqiang,Dong, Hezhong. 2018

[6]Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Kong, Xiangqiang,Wang, Tao,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Dong, Hezhong,Wang, Tao,Dong, Hezhong.

[7]Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Syed Tariq Shah,Chaoyou Pang,Shuli Fan,Meizhen Song,Saima Arain,Shuxun Yu.

[8]Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Zheng, Jun,Liu, Yunjun,Wang, Guoying,Zheng, Jun,Liu, Yunjun,Wang, Guoying,Fu, Junjie,Gou, Mingyue,Huai, Junling,Jian, Min,Guo, Xiying,Dong, Zhigang,Wang, Guoying,Huang, Quansheng,Wang, Hongzhi.

[9]Potential role of D-myo-inositol-3-phosphate synthase and 14-3-3 genes in the crosstalk between Zea mays and Rhizophagus intraradices under drought stress. Li, Tao,Sun, Yuqing,Xu, Lijiiao,Hu, Yajun,Hao, Zhipeng,Zhang, Xin,Li, Hong,Chen, Baodong,Ruan, Yuan,Hu, Yajun,Wang, Youshan,Yang, Liguo.

[10]Characterization of the calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Zhang, Fan,Li, Li,Jiao, Zhenzhen,Chen, Yangsong,Liu, Hui,Chen, Xunji,Fu, Junjie,Wang, Guoying,Zheng, Jun,Zhang, Fan,Li, Li,Jiao, Zhenzhen,Chen, Yangsong,Liu, Hui,Chen, Xunji,Fu, Junjie,Wang, Guoying,Zheng, Jun,Zhang, Fan,Chen, Xunji.

[11]Molecular cloning, characterization and expression analysis of PtrHOS1, a novel gene of cold responses from trifoliate orange [Poncirus trifoliata (L.) Raf.]. Xu, Miao,Sun, Zhong-Hai,Liu, De-Chun,He, Li-Gang,Wang, Hui-Liang,Sun, Zhong-Hai.

[12]Molecular analysis of the annexin gene family in soybean. Wei, X. K.,Liao, W. X.,Zhang, H.,Liang, S. C.,Peng, H.,Huang, L. H.,Peng, H..

[13]Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis. Wang, Jingyi,Li, Qian,Mao, Xinguo,Li, Ang,Jing, Ruilian. 2016

[14]The mechanism underlying fast germination of tomato cultivar LA2711. Yang, Rongchao,Zhang, Haijun,Wang, Jinfang,Li, Dianbo,Guo, Yang-Dong,Chu, Zhuannan,Li, Ying,Ouyang, Bo,Yang, Rongchao,Weeda, Sarah,Ren, Shuxin.

[15]Genome-Wide Identification of the Maize Calcium-Dependent Protein Kinase Gene Family. Ma, Pengda,Liu, Jingying,Yang, Xiangdong,Ma, Rui.

[16]ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Han, Jienan,Wang, Lifeng,Zheng, Hongyan,Pan, Xiaoying,Chen, Fanjun,Li, Xuexian,Wang, Lifeng,Li, Huiyong.

[17]Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction. Sun, Wei,Sun, Hong Wei,Yang, Shu Ke,Lu, Xing Bo,Xu, Xiao Hui,Chen, Hao,Wang, Juan,Sang, Ya Lin,Chen, Hao,Sang, Ya Lin.

[18]Expression of genes related to nitrogen metabolism in maize grown under organic and inorganic nitrogen supplies. Guo, Song,Gu, Ri-liang,Yuan, Li-xing,Mi, Guo-hua,Sun, Wen-yan,Zhao, Bing-qiang.

[19]Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Jia, Jinping,Fu, Junjie,Zheng, Jun,Zhou, Xin,Huai, Junling,Wang, Jianhua,Wang, Meng,Zhang, Ying,Chen, Xiaoping,Zhang, Jinpeng,Zhao, Jinfeng,Su, Zhen,Lv, Yuping,Wang, Guoying. 2006

[20]Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Y.D. Liu,Z.J. Yin,J.W. YU,J. LI,H.L. WEI,X.L. HAN,F.F. SHEN.

作者其他论文 更多>>