Joint mapping of quantitative trait loci for multiple binary characters

文献类型: 外文期刊

第一作者: Xu, CW

作者: Xu, CW;Li, ZK;Xu, SZ

作者机构:

期刊名称:GENETICS ( 影响因子:4.562; 五年影响因子:4.845 )

ISSN: 0016-6731

年卷期: 2005 年 169 卷 2 期

页码:

收录情况: SCI

摘要: Joint mapping for multiple quantitative traits has shed new light on genetic mapping by pinpointing pleiotropic effects and close linkage. joint mapping also can improve statistical power of QTL detection. However, such a joint mapping procedure has not been available for discrete traits. Most disease resistance traits are measured as one or more discrete characters. These discrete characters are often correlated. joint mapping for multiple binary disease traits may provide an opportunity to explore pleiotropic effects and increase the statistical power of detecting disease loci. We develop a maximum-likelihood method for mapping multiple binary traits. We postulate a set of multivariate normal disease liabilities, each contributing to the phenotypic variance of one disease trait. The underlying liabilities are linked to the binary phenotypes through some underlying thresholds. The new method actually maps loci for the variation of multivariate normal liabilities. As a result, we are able to take advantage of existing methods of joint mapping for quantitative traits. We treat the multivariate liabilities as missing values so that an expectation-maximization (EM) algorithm can be applied here. We also extend the method to joint mapping for both discrete and continuous traits. Efficiency of the method is demonstrated using simulated data. We also apply the new method to a set of real data and detect several loci responsible for blast resistance in rice.

分类号:

  • 相关文献
作者其他论文 更多>>