An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties: Information from 96 random accessions with maximized genetic diversity

文献类型: 外文期刊

第一作者: You, GX

作者: You, GX;Zhang, XY;Wang, LF

作者机构:

关键词: genetic diversity;landrace;modem variety;SSR;wheat

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN: 1380-3743

年卷期: 2004 年 14 卷 4 期

页码:

收录情况: SCI

摘要: Genetic relationships among common wheat varieties from the 10 wheat growing regions of China were assessed using SSR markers. The wheat varieties included 33 modem varieties and 63 landraces selected from the national gene bank collection of China. One hundred and four pairs of selected primers detected a total of 802 alleles, of which 234 were specific to A genome, 309 to B genome, and 221 to D genome. The average genetic richness per locus (SigmaA(ij)/loci) for A, B and D genomes were 6.88, 7.92 and 7.62, respectively. Their average genetic dispersion indices (H-t) were 0.637, 0.694 and 0.656, respectively. The B genome showed the highest genetic diversity among the three wheat genomes. The landraces had a higher genetic diversity than the modem varieties, and the major difference between the landraces and the modem varieties in China existed in the D genome, followed by B and A genomes. The majority of the accessions (65.6%) had heterogeneity at the 112 loci detected. The highest heterogeneity locus percentages were 9.09 and 12.73 in the modem varieties and the landraces, respectively. SSR data were analyzed with NTSYS-pc software. The genetic similarities between accessions were estimated with the DICE coefficient. The accessions clustered into two groups, the modem varieties and the landraces by the un-weighted pair-group method using arithmetic average (UPGMA). The trend of correlation coefficients between genetic similarity matrices based on different numbers of random alleles and that of 802 alleles showed that 550 alleles were sufficient to construct a robust dendrogram. The separated simulations from six sub-samples revealed that 550 alleles were the minimum number required to confidently determine the genetic relationships. It was shown that the number of alleles (loci) needed do not have a strong association with the number of wheat lines in the sample size. These data suggested that 73 loci with good polymorphism are needed to reflect genetic relationships among accessions with more than 90% certainty. In the dendrogram, most accessions from the same wheat region were clustered together, and those from geographically adjacent regions usually appeared in the same small group. This indicated that genetic diversity of Chinese common wheat has a close association with their geographic distribution and ecological environment.

分类号:

  • 相关文献

[1]An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production. Zhang, XY,Li, CW,Wang, LF,Wang, HM,You, GX,Dong, YS. 2002

[2]Analysis of average standardized SSR allele size supports domestication of soybean along the Yellow River. Li, Ying-hui,Zhang, Chen,Li, Wei,Chang, Ru-zhen,Qiu, Li-juan,Smulders, Marinus J. M.,Ma, Yan-song,Xu, Qu.

[3]Analysis on Quality Characters Diversity of Wheat Landraces from Yangtze River Valley. Zheng, Wei,Sun, Dongfa,Zheng, Wei,Pan, Feng. 2012

[4]Assessment of Genetic Diversity of Chinese Sand Pear Landraces (Pyrus pyrifolia Nakai) Using Simple Sequence Repeat Markers. Huang, Hongwen,Jiang, Zhengwang,Tang, Feiyan,Hu, Hongju,Chen, Qiliang. 2009

[5]Homologous analysis of SSR-ESTs and transferability of wheat SSR-EST markers across barley, rice and maize. Tang, Jifeng,Gao, Lifeng,Cao, Yongsheng,Jia, Jizeng. 2006

[6]QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Wu, Qiuhong,Chen, Yongxing,Fu, Lin,Zhou, Shenghui,Chen, Jiaojiao,Zhao, Xiaojie,Zhang, Dong,Ouyang, Shuhong,Wang, Zhenzhong,Li, Dan,Wang, Guoxin,Zhang, Deyun,Yuan, Chengguo,You, Mingshan,Liu, Zhiyong,Yuan, Chengguo,Wang, Lixin,Han, Jun.

[7]QTL Analysis of Spike Morphological Traits and Plant Height in Winter Wheat (Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map. Zhai, Huijie,Feng, Zhiyu,Li, Jiang,Liu, Xinye,Ni, Zhongfu,Sun, Qixin,Zhai, Huijie,Feng, Zhiyu,Li, Jiang,Liu, Xinye,Ni, Zhongfu,Sun, Qixin,Xiao, Shihe. 2016

[8]A intervarietal genetic map and QTL analysis for yield traits in wheat. Li, Sishen,Jia, Jizeng,Wei, Xianyun,Zhang, Xiaocun,Li, Linzhi,Chen, Haimei,Fan, Yuding,Sun, Haiyan,Zhao, Xinhua,Lei, Tiandong,Xu, Yunfong,Jiang, Fangshan,Wang, Honggang,Li, Lihui. 2007

[9]Genetic Diversity of Source Germplasm of Upland Cotton in China as Determined by SSR Marker Analysis. CHEN Guang,DU Xiong-Ming. 2006

[10]Study on the Genetic Diversity of Natural Chestnut Populations in Shandong China by SSR Markers. Ai Cheng-xiang,Li Guo-tian,Zhang Li-si,Liu Qing-zhong. 2009

[11]Genetic Diversity of Populations of Saccharum spontaneum with Different Ploidy Levels Using SSR Molecular Markers. Liu, X. L.,Deng, Z. H.,Liu, X. L.,Li, X. J.,Xu, C. H.,Lin, X. Q.,Liu, X. L.,Li, X. J.,Xu, C. H.,Lin, X. Q.. 2016

[12]Genetic Diversity Analysis of Pepper Inbred Lines. Liu, Ziji,Yang, Yan,Cao, Zhenmu. 2015

[13]Genetic diversity of Agropyron mongolicum Keng indigenous to northern China. Che Yong-He,Yang Yan-Ping,Yang Xin-Ming,Li Xiu-Quan,Li Li-Hui. 2011

[14]High-throughput development of simple sequence repeat markers for genetic diversity research in Crambe abyssinica. Qi, Weicong,Lin, Feng,Zhao, Han,Liu, Yuhe,Huang, Bangquan,Cheng, Jihua,Zhang, Wei. 2016

[15]Molecular Analysis of the Genetic Diversity of Chinese Hami Melon and Its Relationship to the Melon Germplasm from Central and South Asia. Long, Bo,Long, Chunlin,Aierken, Yasheng,Akashi, Yukari,Phan Thi Phuong Nhi,Halidan, Yikeremu,Nishida, Hidetaka,Kato, Kenji,Aierken, Yasheng,Wu, Min Zhu,Tanaka, Katsunori. 2011

[16]On the use of SSR markers for the genetic characterization of the Agropyron cristatum (L.) Gaertn. in Northern China. Che, Y. H.,Li, H. J.,Yang, X. M.,Li, X. Q.,Li, L. H.,Che, Y. H.,Yang, Y. P.. 2008

[17]Development of Simple Sequence Repeat (SSR) Markers of Sesame (Sesamum indicum) from a Genome Survey. Wei, Xin,Wang, Linhai,Zhang, Yanxin,Qi, Xiaoqiong,Wang, Xiaoling,Ding, Xia,Zhang, Jing,Zhang, Xiurong.

[18]Analysis of Genetic Diversity in Natural Populations of Psathyrostachys huashanica Keng Using Microsatellite (SSR) Markers. Liu Wen-xian,Liu Wei-hua,Gao Ai-nong,Li Li-hui,Liu Wen-xian,Liu Wen-xian,Wu Jun. 2010

[19]Development of microsatellite markers in Cocos nucifera and their application in evaluating the level of genetic diversity of Cocos nucifera. Xiao, Yong,Luo, Yi,Yang, Yaodong,Fan, Haikuo,Xia, Wei,Zhao, Songlin,Qiao, Fei,Fan, Haikuo,Sager, Ross,Mason, Annaliese S.,Mason, Annaliese S.. 2013

[20]Simple Sequence Repeat Assessment of Genetic Diversity among Wild Populations of Chinese Chestnut. Huang, W. G.,Cheng, L. L.,Hu, G. L.,Zhou, Z. J.. 2014

作者其他论文 更多>>