Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes

文献类型: 外文期刊

第一作者: Huang, ZJ

作者: Huang, ZJ;Zhang, ZJ;Zhang, XL;Zhang, HB;Huang, DF;Huang, RF

作者机构:

关键词: ethylene response;expression of PR gene;GCC box;tomato ethylene responsive factor 1;salt tolerance

期刊名称:FEBS LETTERS ( 影响因子:4.124; 五年影响因子:3.814 )

ISSN: 0014-5793

年卷期: 2004 年 573 卷 1-3 期

页码:

收录情况: SCI

摘要: The interaction between ethylene and osmotic stress pathways modulates the expression of the genes relating to stress adaptation; however, the mechanism is not well understood. In this paper, we report a novel ethylene responsive factor, tomato ethylene responsive factor 1 (TERF1), that integrates ethylene and osmotic stress pathways. Biochemical analysis indicated that TERF1 binds to the GCC box (an element responsive to ethylene) and to the dehydration responsive element, which is responsive to the osmoticum. Expression of TERF1 was induced by ethylene and NaCl treatment. Under normal growth conditions, overexpression of TERF1 in tobacco activated the expression of GCC box-containing pathogen related genes and also caused the typical ethylene triple response. Further investigation indicated that transgenic TERF1 tobacco exhibited salt tolerance, suggesting that TERF1 might function as a linker between the ethylene and osmotic stress pathways. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

分类号:

  • 相关文献

[1]GCC box in Arabidopsis PDF1.2 promoter is an essential and sufficient cis-acting element in response to MeJA treatment. Zhang, HW,Xie, BY,Lu, XY,Yang, YH,Huang, RF.

[2]Transcriptional Modulation of Ethylene Response Factor Protein JERF3 in the Oxidative Stress Response Enhances Tolerance of Tobacco Seedlings to Salt, Drought, and Freezing. Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Wu, Lijun,Wang, Xue-Chen,Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng.

[3]Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Zhang, HB,Zhang, DB,Chen, J,Yang, YD,Huang, ZJ,Huang, DF,Wang, XC,Huang, RF. 2004

[4]Optimizing the binding activity of the AP2/ERF transcription factor with the GCC box element from Brassica napus by directed evolution. Jin, Xiao-Fen,Zhu, Bo,Peng, Ri-He,Jiang, Hai-hua,Yao, Quan-Hong,Xiong, Ai-Sheng,Jiang, Hai-hua,Chen, Jian-Min,Zhuang, Jing,Zhang, Jian.

[5]Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seedling development in tobacco. Zhang, Hongbo,Zhang, Zhijin,Huang, Rongfeng,Zhang, Hongbo,Chen, Jia,Wang, Xue-Chen,Yang, Yuhong,Zhang, Hongbo,Zhang, Zhijin,Huang, Rongfeng.

[6]Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice. Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Li, Yaping,Liu, Qianqian,Xie, Xianzhi,Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Xie, Xianzhi. 2014

[7]IMPROVED NUTRIENT UPTAKE ENHANCES COTTON GROWTH AND SALINITY TOLERANCE IN SALINE MEDIA. Dai, J. L.,Duan, L. S.,Dong, H. Z.,Dai, J. L.. 2014

[8]Isolation of Arachis hypogaea Na+/H+ antiporter and its expression analysis under salt stress. Wan, Shubo,Meng, Jingjing,Guo, Feng,Li, Xinguo,Wan, Shubo,Meng, Jingjing,Guo, Feng,Li, Xinguo,Xing, Jinyi,Wang, Baozhi,Jia, Kunhang,Wan, Shubo,Meng, Jingjing,Guo, Feng,Li, Xinguo. 2011

[9]Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Cheng Cheng,Zhang, Kewei,Ying Zhang,Xiugui Chen,Jiuling Song,Zhiqiang Guo,Kunpeng Li,Kewei Zhang. 2018

[10]Expression of a rice gene OsNOA1 re-establishes nitric oxide synthesis and stress-related gene expression for salt tolerance in Arabidopsis nitric oxide-associated 1 mutant Atnoa1. Qiao, Weihua,Yu, Liang,Fan, Liu-Min,Xiao, Shouhua.

[11]Cloning and Expression Analysis of Eight Upland Cotton Pentatricopeptide Repeat Family Genes. Han, Zongfu,Kong, Fanjin,Deng, Yongsheng,Wang, Zongwen,Shen, Guifang,Wang, Jinghui,Duan, Bing,Li, Ruzhong,Qin, Yuxiang.

[12]Genotypic variations in ion homeostasis, photochemical efficiency and antioxidant capacity adjustment to salinity in cotton (Gossypium hirsutum L.). Ning Wang,Haikun Qi,Guilan Su,Jie Yang,Hong Zhou,Qinghua Xu,Qun Huang,Gentu Yan.

[13]iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance. Wenfang Gong,Feifei Xu,Du, Xiongming,Junling Sun,Zhen Peng,Shoupu He,Zhaoe Pan,Xiongming Du. 2017

[14]Cloning Na+/H+ Antiporter Gene (nhaA) and Analysis of Function in Soybean. Wang Quanwei,Chen Liang,Zhang Hailing. 2011

[15]Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Wang, Hailian,Chen, Guiling,Zhang, Huawen,Liu, Bin,Yang, Yanbing,Qin, Ling,Chen, Erying,Guan, Yanan.

[16]Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Latef, Arafat Abdel Hamed Abdel,He Chaoxing.

[17]Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis. Tan, Tinghong,Cai, Jingqing,Zhan, Erbao,Zhou, Huapeng,Tan, Tinghong,Cai, Jingqing,Zhan, Erbao,Zhou, Huapeng,Yang, Yongqing,Guo, Yan,Zhao, Jinfeng.

[18]SnRK2 Homologs in Gossypium and GhSnRK2.6 Improved Salt Tolerance in Transgenic Upland Cotton and Arabidopsis. Su, Ying,Zhen, Junbo,Zhang, Xi,Chen, Zhiwen,Li, Le,Hua, Jinping,Wang, Yumei,Zhen, Junbo,Huang, Yi.

[19]A Novel miRNA Sponge Form Efficiently Inhibits the Activity ofmiR393 and Enhances the Salt Tolerance and ABA Insensitivity in Arabidopsis thaliana. Long, Ruicai,Li, Xiao,Gao, Yanli,Zhang, Tiejun,Kang, Junmei,Cong, Lili,Yang, Qingchuan,Li, Mingna,Sun, Yan,Wang, Tenghua.

[20]Characterization of a Stress-induced NADP-isocitrate Dehydrogenase Gene in Maize Confers Salt Tolerance in Arabidopsis. Shi, Yunsu,Song, Yanchun,Wang, Tianyu,Li, Yu,Liu, Yinghui.

作者其他论文 更多>>