Complete Mitochondrial Genome of Phytophthora nicotianae and Identification of Molecular Markers for the Oomycetes

文献类型: 外文期刊

第一作者: Yuan, Xiaolong

作者: Yuan, Xiaolong;Feng, Chao;Zhang, Zhongfeng;Zhang, Chengsheng;Feng, Chao

作者机构:

关键词: Phytophthora nicotianae;mitochondrial genome;comparative genomics;phylogenetic relationship;molecular markers

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:5.64; 五年影响因子:6.32 )

ISSN: 1664-302X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Phytophthora nicotianae is one of the most destructive plant pathogens affecting a variety of plants, causing black shank of tobacco, among several other devastating diseases. Herein, we assembled the mitochondrial genome of P. nicotianae and analyzed its gene content and genome structure, performed comparative mitochondrial genomics analysis, and assessed phylogenetic relationships among oomycetes species. The circular mitogenome is 37,561 bp long, with 38 protein-coding genes, 25 transfer RNA (tRNA) genes, and 2 ribosomal RNA genes (rrnl and rrns). The mitochondrial genome showed a biased A/T usage versus G/C. The overall gene content and size of the P. nicotianae mitogenome are identical to those of other published Phytophthora mitogenomes. Interestingly, collinearity analysis using an existing similar to 10 k inversion region (including 11 genes and 8 tRNAs) revealed that Phytophthora andina, Phytophthora infestans, Phytophthora mirabilis, Phytophthora ipomoeae, and Phytophthora phaseoli differed from Phytophthora nicotianae, Phytophthora sojae, Phytophthora ramorum, and Phytophthora polonica. Moreover, inverted repeat regions were found to be absent among species of the Peronosporales when compared with species from the Pythiales and Saprolegniales. A phylogenomic investigation based on 29 protein coding genes demonstrated that Phytophthora is monophyletic, and placed P nicotianae close to the Glade including P. mirabilis, P. ipomoeae, P. andina, P. infestans, and P. phaseoli. Furthermore, we discovered six new candidate DNA molecular markers (rpl6, atp8, nad11, rps2, rps3, and rps4) based on these mitogenomes that would be suitable for species identification in the oomycetes, which have the same identification level as the whole mitogenome and ribosomal DNA sequences. These new molecular markers can not only provide a quick preview of the species without mitogenome information, but will also help to gain better understanding of the oomycetes pathogens and developing treatment or monitoring strategies.

分类号:

  • 相关文献

[1]The complete mitochondrial genome of the tapeworm Cladotaenia vulturi (Cestoda: Paruterinidae): gene arrangement and phylogenetic relationships with other cestodes. Guo, Aijiang,Guo, Aijiang. 2016

[2]Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes. Tang, Mingyong,Chen, Zhiwen,Hua, Jinping,Grover, Corrinne E.,Wendel, Jonathan F.,Wang, Yumei,Ma, Zhiying. 2015

[3]Phylogenetic studies of Petaurista petauri based on complete mitochondrial DNA sequences. Hu, Jie,Li, Dayong,Zhou, Wenliang,Chen, Qizhu,Yang, Yumin,Krzton, Ali. 2016

[4]Complete mitochondrial genome sequence and gene organization of Chinese indigenous chickens with phylogenetic considerations. Zhao, F. P.,Zhang, B. K.,Zhao, F. P.,Fan, H. Y.,Fan, H. Y.,Li, G. H.. 2016

[5]Complete mitochondrial genome of the meadow moth, Loxostege sticticalis (Lepidoptera: Pyraloidea: Crambidae), compared to other Pyraloidea moths. Zheng, Xi-Xi,Peng, Ming-Hui,Bian, Hai-Xu,Chen, Miao-Miao,Liu, Yan-Qun,Qin, Li,Jiang, Xing-Fu. 2016

[6]Characterization of the complete mitochondrial genome of Portunus pelagicus with implications for phylogenomics. Ma, C. Y.,Ma, H. Y.,Ren, G. J.,Wang, W.,Chen, W.,Lu, J. X.,Zou, X.,Ma, L. B.. 2016

[7]The complete mitochondrial genome sequence and gene organization of the mud crab (Scylla paramamosain) with phylogenetic consideration. Ma, Hongyu,Ma, Chunyan,Li, Xincang,Xu, Zhen,Feng, Nana,Ma, Lingbo.

[8]The complete mitochondrial genome of Microtus fortis calamorum (Arvicolinae, Rodentia) and its phylogenetic analysis. Jiang, Xianhuan,Gao, Jun,Li, Kai,Xiao, Junhua,Zhou, Yuxun,Ni, Liju,Hu, Jianhua,Xie, Jianyun,Bo, Xiong,Gao, Chen,Gao, Jun,Sun, Fengping.

[9]Shotgun assembly of the mitochondrial genome from Fenneropenaeus penicillatus with phylogenetic consideration. Zhang, Dianchang,Gong, Fahui,Liu, Tiantian,Guo, Huayang,Zhang, Nan,Zhu, Kecheng,Jiang, Shigui,Gong, Fahui,Liu, Tiantian.

[10]Guanggan (Citrus reticulata) shows strong resistance to Phytophthora nicotianae. Yan, Huaxue,Zhong, Yun,Jiang, Bo,Zhou, Birong,Wu, Bo,Zhong, Guanggan,Yan, Huaxue,Zhong, Yun,Jiang, Bo,Zhou, Birong,Wu, Bo,Zhong, Guanggan,Yan, Huaxue,Zhong, Yun,Jiang, Bo,Zhou, Birong,Wu, Bo,Zhong, Guanggan. 2017

[11]Integrated control of tobacco black shank by combined use of riboflavin and Bacillus subtilis strain Tpb55. Zhang, Chengsheng,Tian, Xueying,Wang, Fenglong,Gao, Jiaming,Han, Teng.

[12]Specific and Sensitive Detection of Phytophthora nicotianae by Nested PCR and Loop-mediated Isothermal Amplification Assays. Li, Benjin,Liu, Peiqing,Xie, Shiyong,Yin, Rongmei,Weng, Qiyong,Chen, Qinghe,Chen, Qinghe.

[13]In vitro and in vivo activities of eugenol against tobacco black shank caused by Phytophthora nicotianae. Jing, Changliang,Wu, Qian,Zhang, Chengsheng,Gou, Jianyu,Han, Xiaobin. 2017

[14]The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. Zhang, Hai-Bin,Li, Kui,Zhang, Qun-Jie,Zhang, Yun,Liu, Yuan,Zhu, Ting,Li, Wei,Huang, Hui,Tong, Yan,Nan, Hong,Shi, Cong,Shi, Chao,Jiang, Jian-Jun,Mao, Shu-Yan,Jiao, Jun-Ying,Zhang, Dan,Zhao, You-Jie,Zhang, Li-Ping,Liu, Yun-Long,Gao, Li-Zhi,Xia, En-Hua,Zhang, Hai-Bin,Li, Kui,Liu, Yuan,Li, Wei,Huang, Hui,Shi, Chao,Jiang, Jian-Jun,Zhang, Dan,Gao, Li-Zhi,Xia, En-Hua,Nan, Hong,Shi, Cong,Sheng, Jun,Zhao, Yuan,Zhang, Qun-Jie,Kim, Changhoon,Yu, Yue,Zhu, Ting,Liu, Ben-Ying,Shao, Sheng-Fu,Ni, De-Jiang,Eichler, Evan E.. 2017

[15]Gene Turnover Contributes to the Evolutionary Adaptation of Acidithiobacillus caldus: Insights from Comparative Genomics. Zhang, Xian,Liu, Xueduan,Dong, Weiling,Yin, Huaqun,Zhang, Xian,Liu, Xueduan,Yin, Huaqun,He, Qiang,Zhang, Xiaoxia,Fan, Fenliang,Peng, Deliang,Huang, Wenkun. 2016

[16]Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response. Ma, Shisong,Ding, Zehong,Li, Pinghua. 2017

[17]pirAB(vp)-Bearing Vibrio parahaemolyticus and Vibrio campbellii Pathogens Isolated from the Same AHPND-Affected Pond Possess Highly Similar Pathogenic Plasmids. Dong, Xuan,Wang, Hailiang,Zou, Peizhuo,Xie, Guosi,Wan, Xiaoyuan,Yang, Qian,Zhu, Yanping,Chen, Mengmeng,Guo, Chengcheng,Wang, Wenchao,Huang, Jie,Bi, Dexi,Zou, Peizhuo,Chen, Mengmeng,Liu, Zhen. 2017

[18]Identification and functional analysis of anthocyanin biosynthesis genes in Phalaenopsis hybrids. Wang, L. M.,Zhang, J.,Dong, X. Y.,Fu, Z. Z.,Jiang, H.,Zhang, H. C.. 2018

[19]Rapid evolutionary divergence of diploid and allotetraploid Gossypium mitochondrial genomes. Chen, Zhiwen,Nie, Hushuai,Pei, Haili,Li, Shuangshuang,Hua, Jinping,Wang, Yumei,Zhang, Lida. 2017

[20]Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Oryza Species. Zhang, Qun-Jie,Gao, Li-Zhi,Zhang, Qun-Jie,Zhang, Qun-Jie. 2017

作者其他论文 更多>>