Functional Characterization of TaSnRK2.8 Promoter in Response to Abiotic Stresses by Deletion Analysis in Transgenic Arabidopsis

文献类型: 外文期刊

第一作者: Zhang, Hongying

作者: Zhang, Hongying;Zhang, Hongying;Jing, Ruilian;Mao, Xinguo

作者机构:

关键词: TaSnRK2.8;inducible promoter;abiotic stress;abscisic acid;deletion analysis

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Drought, salinity, and cold are the major factors limiting wheat quality and productivity; it is thus highly desirable to characterize the abiotic-stress-inducible promoters suitable for the genetic improvement of plant resistance. The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family genes show distinct regulatory properties in response to abiotic stresses. The present study characterized the approximately 3000-bp upstream sequence (the 313 bp upstream of the ATG was the transcription start site) of the Triticum aestivum TaSnRK2.8 promoter under abscisic acid (ABA) and abiotic stresses. Four different-length 5 0 deletion fragments of TaSnRK2.8 promoter were fused with the GUS reporter gene and transformed into Arabidopsis. Tissue expression analysis showed that the TaSnRK2.8 promoter region from position -481 to -821 contained the stalk-specific elements, and the region from position -2631 to -1481 contained the leaf- and root-specific elements. In the ABA-treated seedlings, the deletion analysis showed that the TaSnRK2.8 promoter region from position -821 to -2631 contained ABA response elements. The abiotic stress responses of the TaSnRK2.8 promoter derivatives demonstrated that they harbored abiotic-stress response elements: the region from position -821 to -408 harbored the osmotic-stress response elements, whereas the region from position -2631 to -1481 contained the positive regulatory motifs and the region from position -1481 to -821 contained the leaf-and stalk-specific enhancers. Further deletion analysis of the promoter region from position -821 to -408 indicated that a 125-bp region from position -693 to -568 was required to induce an osmotic-stress response. These results contribute to a better understanding of the molecular mechanisms of TaSnRK2.8 in response to abiotic stresses, and the TaSnRK2.8 promoter seems to be a candidate for regulating the expression of abiotic stress response genes in transgenic plants.

分类号:

  • 相关文献

[1]Identification of a 467 bp Promoter of Maize Phosphatidylinositol Synthase Gene (ZmPIS) Which Confers High-Level Gene Expression and Salinity or Osmotic Stress Inducibility in Transgenic Tobacco. Zhang, Hongli,Hou, Jiajia,Jiang, Pingping,Qi, Shoumei,Zhang, Kewei,Li, Kunpeng,Xu, Changzheng,He, Qiuxia,Ding, Zhaohua,Wang, Zhiwu. 2016

[2]Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava. Fu, Lili,Ding, Zehong,Han, Bingying,Hu, Wei,Li, Yajun,Zhang, Jiaming. 2016

[3]Characterization of the calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Zhang, Fan,Li, Li,Jiao, Zhenzhen,Chen, Yangsong,Liu, Hui,Chen, Xunji,Fu, Junjie,Wang, Guoying,Zheng, Jun,Zhang, Fan,Li, Li,Jiao, Zhenzhen,Chen, Yangsong,Liu, Hui,Chen, Xunji,Fu, Junjie,Wang, Guoying,Zheng, Jun,Zhang, Fan,Chen, Xunji.

[4]A novel DREB transcription factor from Halimodendron halodendron leads to enhance drought and salt tolerance in Arabidopsis. Ma, J. -T.,Wang, Z. -L.,Ma, J. -T.,Yin, C. -C.,Guo, Q. -Q.,Zhou, M. -L.,Wu, Y. -M.,Guo, Q. -Q..

[5]CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Zhang, Ying,Yu, Hongjun,Yang, Xueyong,Li, Qiang,Ling, Jian,Wang, Hong,Gu, Xingfang,Huang, Sanwen,Jiang, Weijie,Zhang, Ying,Jiang, Weijie.

[6]Identification of functional region of helicase gene promoter in Bombyx mori nuclear polyhedrosis virus. Xiao, QL,Zhang, ZF,Yi, YZ,He, JL,Wu, XF. 2002

[7]Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP. Yang, Qingchuan,Kang, Junmei,Zhang, Tiejun,Sun, Yan,Gruber, Margaret Yvonne,Fang, Feng.

[8]Isolation and Functional Characterization of Bidirectional Promoters in Rice. Wang, Rui,Zhu, Menglin,Yang, Mei,Zhou, Fei,Chen, Hao,Lin, Yongjun,Wang, Rui,Zhu, Menglin,Yang, Mei,Zhou, Fei,Chen, Hao,Lin, Yongjun,Yan, Yan. 2016

[9]An Autoregulated Fine-Tuning Strategy for Titer Improvement of Secondary Metabolites Using Native Promoters in Streptomyces. Wang, Junyang,Yang, Keqian,Li, Zilong,Wang, Weishan,Li, Shanshan,Xiang, Wensheng,Wang, Junyang. 2018

[10]Driving the expression of RAA1 with a drought-responsive promoter enhances root growth in rice, its accumulation of potassium and its tolerance to moisture stress. Chen, Guang,Li, Chaolei,Gao, Zhenyu,Zhang, Yu,Zhu, Li,Hu, Jiang,Ren, Deyong,Qian, Qian,Chen, Guang,Xu, Guohua. 2018

[11]Molecular cloning and characterization of the promoter for the multiple stress-inducible gene BjCHI1 from Brassica juncea. Wu, Xue-Feng,Wang, Chun-Lian,Xie, En-Bei,Gao, Ying,Fan, Ying-Lun,Zhao, Kai-Jun,Wu, Xue-Feng,Liu, Pi-Qing.

[12]Identification of fungus-responsive cis-acting element in the promoter of Brassica juncea chitinase gene, BjCHI1. Gao, Ying,Zan, Xin-Li,Wu, Xue-Feng,Jia, Shuang-Wei,Zhao, Kai-Jun,Zan, Xin-Li,Chen, Yu-Ling,Yao, Lei. 2014

[13]Isolation and characterization of three cadmium-inducible promoters from Oryza sativa. Qiu, Chun-Hong,Li, Hao,Li, Juan,Qin, Rui-Ying,Xu, Rong-Fang,Yang, Ya-Chun,Ma, Hui,Song, Feng-Shun,Li, Li,Wei, Peng-Cheng,Yang, Jian-Bo.

[14]Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice. Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Li, Yaping,Liu, Qianqian,Xie, Xianzhi,Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Xie, Xianzhi. 2014

[15]The Synthesis and Accumulation of Resveratrol Are Associated with Veraison and Abscisic Acid Concentration in Beihong (Vitis vinifera x Vitis amurensis) Berry Skin. Wang, Junfang,Wang, Shuqin,Liu, Guotian,Duan, Wei,Li, Shaohua,Wang, Lijun,Wang, Junfang,Wang, Shuqin,Liu, Guotian,Duan, Wei,Li, Shaohua,Wang, Lijun,Wang, Junfang,Wang, Shuqin,Liu, Guotian,Edwards, Everard J.. 2016

[16]Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. Dong, Hezhong,Li, Weijiang,Zhang, Dongmei,Dong, Hezhong,Niu, Yuehua. 2008

[17]Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. Liu, Qiaohong,Liu, Zhibin,Yang, Hao,Wang, Jianmei,Li, Xufeng,Yang, Yi,Yang, Liang. 2016

[18]Involvement of G1-to-S transition and AhAUX-dependent auxin transport in abscisic acid-induced inhibition of lateral root primodia initiation in Arachis hypogaea L. Guo, Dongliang,Liang, Jianhua,Yan, Youchen,Li, Ling,Dai, Yanhong,Guo, Dongliang,Qiao, Yanchun. 2012

[19]Regulation of endogenous hormones on post-harvest senescence in transgenic broccoli carrying an antisense or a sense BO-ACO 2 gene. Qin, Feifei,Wang, Cheng-rong,Wang, Ran,Ma, Gang,Qin, Feifei,Qin, Feifei,Xu, Hui-lian. 2009

[20]Overexpression of PvPin1, a Bamboo Homolog of PIN1-Type Parvulin 1, Delays Flowering Time in Transgenic Arabidopsis and Rice. Zheng, Zhigang,Yang, Xiaoming,Zhu, Longfei,Wei, Hantian,Lin, Xinchun,Fu, Yaping. 2017

作者其他论文 更多>>