The Emerging Oilseed Crop Sesamum indicum Enters the "Omics" Era

文献类型: 外文期刊

第一作者: Dossa, Komivi

作者: Dossa, Komivi;Niang, Mareme;Fonceka, Daniel;Mmadi, Marie A.;Yehouessi, Louis W.;Cisse, Ndiaga;Dossa, Komivi;Diouf, Diaga;Mmadi, Marie A.;Dossa, Komivi;Wang, Linhai;Wei, Xin;Zhang, Yanxin;Yu, Jingyin;Mmadi, Marie A.;Liao, Boshou;Zhang, Xiurong;Fonceka, Daniel

作者机构:

关键词: Sesamum indicum;Omic resources;molecular breeding;large-scale re-sequencing;improvement

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Sesame (Sesamum indicum L.) is one of the oldest oilseed crops widely grown in Africa and Asia for its high-quality nutritional seeds. It is well adapted to harsh environments and constitutes an alternative cash crop for smallholders in developing countries. Despite its economic and nutritional importance, sesame is considered as an orphan crop because it has received very little attention from science. As a consequence, it lags behind the other major oil crops as far as genetic improvement is concerned. In recent years, the scenario has considerably changed with the decoding of the sesame nuclear genome leading to the development of various genomic resources including molecular markers, comprehensive genetic maps, high-quality transcriptome assemblies, web-based functional databases and diverse daft genome sequences. The availability of these tools in association with the discovery of candidate genes and quantitative trait locis for key agronomic traits including high oil content and quality, waterlogging and drought tolerance, disease resistance, cytoplasmic male sterility, high yield, pave the way to the development of some new strategies for sesame genetic improvement. As a result, sesame has graduated from an "orphan crop" to a "genomic resource-rich crop." With the limited research teams working on sesame worldwide, more synergic efforts are needed to integrate these resources in sesame breeding for productivity upsurge, ensuring food security and improved livelihood in developing countries. This review retraces the evolution of sesame research by highlighting the recent advances in the "Omics" area and also critically discusses the future prospects for a further genetic improvement and a better expansion of this crop.

分类号:

  • 相关文献

[1]Pyramiding of Pi46 and Pita to improve blast resistance and to evaluate the resistance effect of the two R genes. Xiao Wu-ming,Luo Li-xin,Wang Hui,Guo Tao,Liu Yong-zhu,Zhou Ji-yong,Chen Zhi-qiang,Zhu Xiao-yuan,Yang Qi-yun. 2016

[2]Genetic Analysis in Maize Foundation Parents with Mapping Population and Testcross Population: Ye478 Carried More Favorable Alleles and Using QTL Information Could Improve Foundation Parents. Hou, Xianbin,Xiao, Qianlin,Yi, Qiang,Bian, Shaowei,Hu, Yufeng,Huang, Yubi,Liu, Hanmei,Zhang, Junjie,Hao, Xiaoqin,Cheng, Weidong,Li, Yu. 2016

[3]Research Progress on Transformation Maize Mediated by Agrobacterithm Tumefaciens. Li, Xiuping,Li, Xiuping,Jiang, Lijing,Liu, Na. 2011

[4]Improvement of Water Balance Model Based on Wireless Water Sensor. Li Shijuan,Li Shijuan. 2015

[5]Brief Introduction to the Development of Chinese Dairy Buffalo Industry. Yang, Bing-Zhuang,Liang, Xiang-Wei,Qin, Jing,Yang, Cheng-Jian,Shang, Jiang-Hua. 2013

[6]Global gene expression responses to waterlogging in roots of sesame (Sesamum indicum L.). Wang, Linhai,Zhang, Yanxin,Qi, Xiaoqiong,Li, Donghua,Wei, Wenliang,Zhang, Xiurong. 2012

[7]Optimum moisture contents of seeds stored at ambient temperatures. Chai, JF,Ma, RY,Li, LZ,Du, YY. 1998

[8]Analysis of Genetic Diversity and Population Structure of Sesame Accessions from Africa and Asia as Major Centers of Its Cultivation. Dossa, Komivi,Wei, Xin,Zhang, Yanxin,Yang, Wenjuan,Liao, Boshou,Zhang, Xiurong,Dossa, Komivi,Wei, Xin,Fonceka, Daniel,Cisse, Ndiaga,Zhang, Xiurong,Fonceka, Daniel,Diouf, Diaga. 2016

[9]Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. Dossa, Komivi,Wei, Xin,Li, Donghua,Zhang, Yanxin,Wang, Linhai,Yu, Jingyin,Boshou, Liao,Zhang, Xiurong,Dossa, Komivi,Fonceka, Daniel,Cisse, Ndiaga,Dossa, Komivi,Diouf, Diaga,Fonceka, Daniel. 2016

[10]Functional Characterization of the Versatile MYB Gene Family Uncovered Their Important Roles in Plant Development and Responses to Drought and Waterlogging in Sesame. Mmadi, Marie Ali,Dossa, Komivi,Wang, Linhai,Zhou, Rong,Wang, Yanyan,Zhang, Xiurong,Mmadi, Marie Ali,Dossa, Komivi,Cisse, Ndiaga,Mmadi, Marie Ali,Dossa, Komivi,Sy, Mame Oureye. 2017

[11]Deep resequencing reveals allelic variation in Sesamum indicum. Wang, Linhai,Zhang, Yanxin,Li, Donghua,Wei, Xin,Ding, Xia,Zhang, Xiurong,Han, Xuelian,Han, Xuelian. 2014

[12]Sinbase: An Integrated Database to Study Genomics, Genetics and Comparative Genomics in Sesamum indicum. Wang, Linhai,Yu, Jingyin,Li, Donghua,Zhang, Xiurong.

[13]DEVELOPMENT AND CHARACTERIZATION OF 59 POLYMORPHIC CDNA-SSR MARKERS FOR THE EDIBLE OIL CROP SESAMUM INDICUM (PEDALIACEAE). Wang, Linhai,Zhang, Yanxin,Qi, Xiaoqiong,Gao, Yuan,Zhang, Xiurong,Wang, Linhai,Zhang, Yanxin,Qi, Xiaoqiong,Gao, Yuan,Zhang, Xiurong. 2012

[14]Genetic improvement of cotton tolerance to salinity stress. Ma, Xinrong,Dong, Hezhong,Li, Weijiang,Ma, Xinrong. 2011

[15]Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Zhao, Shuzhen,Li, Aiqin,Li, Changsheng,Xia, Han,Zhao, Chuanzhi,Zhang, Ye,Hou, Lei,Wang, Xingjun. 2017

[16]Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Varshney, Rajeev K.,Mohan, S. Murali,Gaur, Pooran M.,Pandey, Manish K.,Sawargaonkar, Shrikant L.,Chitikineni, Annapurna,Janila, Pasupuleti,Saxena, K. B.,Sharma, Mamta,Rathore, Abhishek,Mallikarjuna, Nalini,Gowda, C. L. L.,Varshney, Rajeev K.,Varshney, Rajeev K.,Varshney, Rajeev K.,Liang, Xuanqiang,Gangarao, N. V. P. R.,Pandey, Manish K.,Bohra, Abhishek,Pratap, Aditya,Datta, Subhojit,Chaturvedi, S. K.,Nadarajan, N.,Kimurto, Paul K.,Fikre, Asnake,Tripathi, Shailesh,Bharadwaj, Ch.,Anuradha, G.,Babbar, Anita,Choudhary, Arbind K.,Mhase, M. B.,Mannur, D. M.. 2013

[17]Advances in Molecular Breeding Research of Goat Fecundity. Wang, Jian-Ying,Zhang, Xiu-Mei,Lan, Zou-Ran. 2012

[18]Analysis for the Global Patent Competition on Chinese Cabbage Molecular Breeding. Zhao, Jingjuan. 2015

[19]High-throughput development of simple sequence repeat markers for genetic diversity research in Crambe abyssinica. Qi, Weicong,Lin, Feng,Zhao, Han,Liu, Yuhe,Huang, Bangquan,Cheng, Jihua,Zhang, Wei. 2016

[20]Association Analysis of the nced and rab28 Genes with Phenotypic Traits Under Water Stress in Maize. Su, Zhijun,Li, Xinhai,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Weng, Jianfeng,Zhang, Degui,Zhang, Shihuang,Su, Zhijun,Li, Xinhai,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Weng, Jianfeng,Zhang, Degui,Zhang, Shihuang,Liang, Xiaoling,Su, Zhijun,Wang, Zhigang,Gao, Julin.

作者其他论文 更多>>